

Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)

Collections:

Library Package List

JAR File List

FAQ for JDK

FAQ for Apache Maven

commons-lang.jar

commons-net.jar

commons-codec.jar

commons-collections

iText: PDF Generation

JDBC for Oracle

JDBC for MySQL

JDBC for SQL Server

Other Resources:

Software QA Resources

Developer Resources

DBA Resources

Windows Tutorials

Java JAR Files

DLL Files

File Extensions

Security Certificates

Regular Expression

Link Directories

Interview Q & A

Biotech Resources

Cell Phone Resources

Travel Resources

Frequently Asked Questions

FYIcenter Forum

[image:] [image:]

Audio Biotech Bytecode Database Framework Game General Graphics I/O IDE JAR Tools JavaBeans JDBC JDK JSP Logging Mail Messaging Network PDF Report Scripting Security Server Servlet SOAP Testing Web XML

Home Hot About Collections Index RSS Atom Ask

Tester Developer DBA Windows JAR DLL Files Certificates RegEx Links Q&A Biotech Phones Travel FAQ Forum

Home > PDF

What Is fop.jar in fop-2.7-bin.zip

What Is fop.jar?
I got it from the fop-2.7-bin.zip.

✍: FYIcenter.com
[image:]
fop.jar in fop-2.7-bin.zip is the JAR file for FOP 2.7, which
is a print formatter driven by XSL formatting objects (XSL-FO).
You can obtain fop.jar from the build folder of the fop-2.7-bin.zip file.

Below is the information about the fop.jar (2.2) file:

JAR File Size and Download Location:

JAR name: fop.jar, fop-2.7.jar
Target JDK version: 1.7
File name: fop.jar
File size: 4442817 bytes
Release date: 20-Jan-2022
Download: Apache FOP Website

Java source code files for fop.jar:

⏎ org/apache/fop/pdf/PDFPaintingState.java
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* $Id: PDFPaintingState.java 1761020 2016-09-16 11:17:35Z ssteiner $ */

package org.apache.fop.pdf;

import java.awt.Color;
import java.awt.Paint;
import java.awt.Shape;
import java.awt.geom.Area;
import java.awt.geom.GeneralPath;

import org.apache.xmlgraphics.java2d.color.ColorUtil;

import org.apache.fop.util.AbstractPaintingState;

/**
 * This keeps information about the current painting state when writing to pdf.
 * It allows for creating new graphics states with the q operator.
 * This class is only used to store the information about the state
 * the caller needs to handle the actual pdf operators.
 *
 * When setting the state for pdf there are three possible ways of
 * handling the situation.
 * The values can be set to override previous or default values.
 * A new state can be added and then the values set.
 * The current state can be popped and values will return to a
 * previous state then the necessary values can be overridden.
 * The current transform behaves differently to other values as the
 * matrix is combined with the current resolved value.
 */
public class PDFPaintingState extends org.apache.fop.util.AbstractPaintingState {

 private static final long serialVersionUID = 5384726143906371279L;

 /**
 * PDF State for storing graphics state.
 */
 public PDFPaintingState() {
 }

 /**
 * Set the current paint.
 * This checks if the paint will change and then sets the current paint.
 *
 * @param p the new paint
 * @return true if the new paint changes the current paint
 */
 public boolean setPaint(Paint p) {
 PDFData data = getPDFData();
 Paint currentPaint = data.paint;
 if (currentPaint == null) {
 if (p != null) {
 data.paint = p;
 return true;
 }
 } else if (p instanceof Color && currentPaint instanceof Color) {
 if (!ColorUtil.isSameColor((Color)p, (Color)currentPaint)) {
 data.paint = p;
 return true;
 }
 } else if (!currentPaint.equals(p)) {
 data.paint = p;
 return true;
 }
 return false;
 }

 /**
 * Check if the clip will change the current state.
 * A clip is assumed to be used in a situation where it will add
 * to any clip in the current or parent states.
 * A clip cannot be cleared, this can only be achieved by going to
 * a parent level with the correct clip.
 * If the clip is different then it may start a new state so that
 * it can return to the previous clip.
 *
 * @param cl the clip shape to check
 * @return true if the clip will change the current clip.
 */
 public boolean checkClip(Shape cl) {
 Shape clip = getPDFData().clip;
 if (clip == null) {
 if (cl != null) {
 return true;
 }
 } else if (!new Area(clip).equals(new Area(cl))) {
 return true;
 }
 //TODO check for clips that are larger than the current
 return false;
 }

 /**
 * Set the current clip.
 * This either sets a new clip or sets the clip to the intersect of
 * the old clip and the new clip.
 *
 * @param cl the new clip in the current state
 */
 public void setClip(Shape cl) {
 PDFData data = getPDFData();
 Shape clip = data.clip;
 if (clip != null) {
 Area newClip = new Area(clip);
 newClip.intersect(new Area(cl));
 data.clip = new GeneralPath(newClip);
 } else {
 data.clip = cl;
 }
 }

 /**
 * Sets the character spacing (Tc).
 * @param value the new value
 * @return true if the value was changed with respect to the previous value
 */
 public boolean setCharacterSpacing(float value) {
 PDFData data = getPDFData();
 if (value != data.characterSpacing) {
 data.characterSpacing = value;
 return true;
 }
 return false;
 }

 /**
 * Returns the current character spacing (Tc) value.
 * @return the Tc value
 */
 public float getCharacterSpacing() {
 return getPDFData().characterSpacing;
 }

 /**
 * Get the current stack level.
 *
 * @return the current stack level
 */
 public int getStackLevel() {
 return getStateStack().size();
 }

 /**
 * Get the graphics state.
 * This gets the combination of all graphic states for
 * the current context.
 * This is the graphic state set with the gs operator not
 * the other graphic state changes.
 *
 * @return the calculated ExtGState in the current context
 */
 public PDFGState getGState() {
 PDFGState defaultState = PDFGState.DEFAULT;

 PDFGState state;
 PDFGState newState = new PDFGState();
 newState.addValues(defaultState);
 for (AbstractData abstractData : getStateStack()) {
 PDFData data = (PDFData) abstractData;
 state = data.gstate;
 if (state != null) {
 newState.addValues(state);
 }
 }
 if (getPDFData().gstate != null) {
 newState.addValues(getPDFData().gstate);
 }
 return newState;
 }

 public void setLayer(String layer) {
 getPDFData().setLayer(layer);
 }

 public String getLayer() {
 return getPDFData().getLayer();
 }

 public boolean getLayerChanged() {
 String layerCurrent = getLayer();
 if (layerCurrent == null) {
 return false;
 } else if (getStateStack().isEmpty()) {
 return true;
 } else {
 for (int i = getStackLevel(); i > 0; --i) {
 String layerPrev = ((PDFData) getStateStack().get(i - 1)).getLayer();
 if (layerPrev == null) {
 continue;
 } else {
 // Both current and prior are set, so, if same, then we know layer
 // didn't change (and can stop search), otherwise it did change.
 return !layerCurrent.equals(layerPrev);
 }
 }
 // Current layer set, but no prior saved layer set, so must have changed.
 return true;
 }
 }

 /** {@inheritDoc} */
 @Override
 protected AbstractData instantiateData() {
 return new PDFData();
 }

 /** {@inheritDoc} */
 @Override
 protected AbstractPaintingState instantiate() {
 return new PDFPaintingState();
 }

 /**
 * Push the current state onto the stack.
 * This call should be used when the q operator is used
 * so that the state is known when popped.
 */
 @Override
 public void save() {
 AbstractData data = getData();
 AbstractData copy = (AbstractData)data.clone();
 data.clearTransform();
 getStateStack().push(copy);
 }

 private PDFData getPDFData() {
 return (PDFData)getData();
 }

 // @SuppressFBWarnings("SE_INNER_CLASS")
 private class PDFData extends org.apache.fop.util.AbstractPaintingState.AbstractData {

 private static final long serialVersionUID = 3527950647293177764L;

 private Paint paint;
 private Paint backPaint;
 //private int lineCap = 0; //Disabled the ones that are not used, yet
 //private int lineJoin = 0;
 //private float miterLimit = 0;
 //private int dashOffset = 0;
 private Shape clip;
 private PDFGState gstate;

 //text state
 private float characterSpacing;

 /** {@inheritDoc} */
 @Override
 public Object clone() {
 PDFData obj = (PDFData)super.clone();
 obj.paint = this.paint;
 obj.backPaint = this.paint;
 //obj.lineCap = this.lineCap;
 //obj.lineJoin = this.lineJoin;
 //obj.miterLimit = this.miterLimit;
 //obj.dashOffset = this.dashOffset;
 obj.clip = this.clip;
 obj.gstate = this.gstate;
 obj.characterSpacing = this.characterSpacing;
 return obj;
 }

 /** {@inheritDoc} */
 @Override
 public String toString() {
 return super.toString()
 + ", paint=" + paint
 + ", backPaint=" + backPaint
 //+ ", lineCap=" + lineCap
 //+ ", miterLimit=" + miterLimit
 //+ ", dashOffset=" + dashOffset
 + ", clip=" + clip
 + ", gstate=" + gstate;
 }

 /** {@inheritDoc} */
 @Override
 protected AbstractData instantiate() {
 return new PDFData();
 }
 }

}

⏎ org/apache/fop/pdf/PDFPaintingState.java

Or download all of them as a single archive file:

File name: fop-2.7-src.zip
File size: 3401312 bytes
Release date: 2022-01-20
Download

⇒ "fop" Command in fop-2.7-bin.zip

⇐ What Is fop-2.7-bin.zip

⇑ Download and Installing of FOP 2.x

⇑⇑ FAQ for FOP (Formatting Object Processor)

2016-07-07, 35195👍, 0💬

Related Topics:
[image:]What Is fop.jar in fop-2.7-bin.zip
What Is fop.jar? I got it from the fop-2.7-bin.zip. fop.jar in fop-2.7-bin.zip is the JAR file for FOP 2.7, which is a print formatter driven by XSL formatting objects (XSL-FO). You can obtain fop.jar from the build folder of the fop-2.7-bin.zip file. Below is the information about the fop.jar (2.2)... 2016-07-07, 35196🔥, 0💬

[image:]Download and Install fop-1.1-bin.zip
How to download and install fop-1.1-bin.zip? I want to try FOP (Formatting Objects Processor) 1.1. FOP (Formatting Objects Processor) is a print formatter driven by XSL formatting objects (XSL-FO). You can follow these steps to download and install FOP 1.1 with the binary package, fop-1.1-bin.zip: 1... 2016-07-05, 3946🔥, 0💬

[image:]What Is fop-2.7-bin.zip
What Is fop-2.7-bin.zip? I downloaded it from the Apache FOP Website. fop-2.7-bin.zip is the binary package of Apache FOP 2.7 in ZIP format. FOP (Formatting Objects Processor) is a print formatter driven by XSL formatting objects (XSL-FO). Below is the information about the fop-2.7-bin.zip file: Dow... 2016-07-07, 3585🔥, 0💬

[image:]What Is fop.jar 1.1
What Is fop.jar 1.1? I got it from the fop-1.1-bin.zip fop.jar (1.1) is the JAR file for FOP 1.1, which is a print formatter driven by XSL formatting objects (XSL-FO). You can obtain fop.jar from the build folder of the fop-1.1-bin.zip file. Below is the information about the fop.jar (1.1) file: JAR... 2016-07-07, 3545🔥, 1💬
💬 2015-12-15 Narendra: Thanks

[image:]Download and Install fop-2.7-bin.zip
How to download and install fop-2.7-bin.zip? I want to try FOP (Formatting Objects Processor) 2.7. FOP (Formatting Objects Processor) is a print formatter driven by XSL formatting objects (XSL-FO). You can follow these steps to download and install FOP 2.7 with the binary package, fop-2.7-bin.zip: 1... 2016-07-07, 3294🔥, 0💬

[image:]Download and Install fop-0.20.5-bin.zip
How to download and install fop-0.20.5-bin.zip? I want to try FOP (Formatting Objects Processor) 0.20.5. FOP (Formatting Objects Processor) is a print formatter driven by XSL formatting objects (XSL-FO). You can follow these steps to download and install FOP 0.20.5 with the binary package, fop-0.20.... 2016-07-08, 3130🔥, 0💬

[image:]What Is fop-1.1-bin.zip
What Is fop-1.1-bin.zip? I downloaded it from the Apache FOP Website. fop-1.1-bin.zip is the binary package of Apache FOP 1.1 in ZIP format. FOP (Formatting Objects Processor) is a print formatter driven by XSL formatting objects (XSL-FO). Below is the information about the fop-1.1-bin.zip file: Dow... 2016-07-05, 3055🔥, 0💬

[image:]"fop" Command in fop-1.1-bin.zip
What Is the "fop" command in fop-1.1-bin.zip? Can I use it to generate PDF files? "fop" command is the command line tool that allows you to run FOP 1.1 as a standalone application. It reads a XSL-FO file and generates a PDF file by default. "fop" command requires that the environment variable JAVA_H... 2016-07-07, 2782🔥, 0💬

[image:]XSLT Process in fop-2.0-bin.zip
How to run the XSLT process in fop-2.0-bin.zip transform XML files using XSLT templates? which can be used to perform an XSLT process to transform an XML file using XSLT template. The XSLT process reads an XML file and an XSLT file. The output is what ever the XSLT file wants to generate. See the se... 2016-07-05, 2779🔥, 0💬

[image:]What Is XSL-FO Language
What Is XSL-FO Language? XSL-FO (Extensible Stylesheet Language - Formatting Objects) is an XML based language that can be used to describes the way pages are set up. The contents of the pages are filled from flows. There can be static flows that appear on every page (for headers and footers) and th... 2015-11-26, 2284🔥, 0💬

Audio Biotech Bytecode Database Framework Game General Graphics I/O IDE JAR Tools JavaBeans JDBC JDK JSP Logging Mail Messaging Network PDF Report Scripting Security Server Servlet SOAP Testing Web XML

Home Hot About Collections Index RSS Atom Ask

Tester Developer DBA Windows JAR DLL Files Certificates RegEx Links Q&A Biotech Phones Travel FAQ Forum

Copyright © 2024 FYIcenter.com
All rights in the contents of this web site are reserved by the individual author. FYIcenter.com does not guarantee the truthfulness, accuracy, or reliability of any contents.

Popular Posts:

commons-collections4...
commons-collections4-4.2 -sources.jaris the source JAR file for Apache Commons Collections 4.2, whic...

commons-fileupload-1...
commons-fileupload-1.3.3 -sources.jaris the source JAR file for Apache Commons FileUpload 1.3., whic...

jndi-1.2.1.jar - JND...
The Java Naming and Directory Interface (JNDI) is part of the Java platform, providing applications ...

smack-3.1.0.jar - Sm...
Smack is an Open Source XMPP (Jabber) client library for instant messaging and presence. A pure Java...

servlet-api-3.0.jar ...
Java Servlet 3.0 Specification API. JAR File Size and Download Location: File name: servlet-api.jar,...

