What Is poi-5.2.3.jar?

What Is poi-5.2.3.jar?

✍: FYIcenter.com

poi-5.2.3.jar is one of the JAR files for Apache POI 5.2.3, which provides an API for Microsoft document files of Word, Excel, PowerPoint, and Visio.

poi-5.2.3.jar supports Apache POI components that read and write Microsoft's OLE 2 Compound document format, which is used in early versions of Microsoft Office tools like Word 97, Excel 97, PowerPoint 97, etc.

poi-5.2.3.jar is distributed as part of the poi-bin-5.2.3-20220909.zip download file.

JAR File Size and Download Location:

JAR name: poi-5.2.3.jar
Target JDK version: 9

File name: poi.jar, poi-5.2.3.jar
File size: 2964641 bytes
Release date: 09-09-2022
Download: Apache POI Website

Here are Java Source Code files for poi-5.2.3.jar:

org/apache/poi/ss/formula/functions/LinearRegressionFunction.java

/*
 *  ====================================================================
 *    Licensed to the Apache Software Foundation (ASF) under one or more
 *    contributor license agreements.  See the NOTICE file distributed with
 *    this work for additional information regarding copyright ownership.
 *    The ASF licenses this file to You under the Apache License, Version 2.0
 *    (the "License"); you may not use this file except in compliance with
 *    the License.  You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 * ====================================================================
 */

package org.apache.poi.ss.formula.functions;

import org.apache.poi.ss.formula.TwoDEval;
import org.apache.poi.ss.formula.eval.ErrorEval;
import org.apache.poi.ss.formula.eval.EvaluationException;
import org.apache.poi.ss.formula.eval.NumberEval;
import org.apache.poi.ss.formula.eval.RefEval;
import org.apache.poi.ss.formula.eval.ValueEval;
import org.apache.poi.ss.formula.functions.LookupUtils.ValueVector;

/**
 * Base class for linear regression functions.
 *
 * Calculates the linear regression line that is used to predict y values from x values<br>
 * (http://introcs.cs.princeton.edu/java/97data/LinearRegression.java.html)
 * <b>Syntax</b>:<br>
 * <b>INTERCEPT</b>(<b>arrayX</b>, <b>arrayY</b>)<p>
 * or
 * <b>SLOPE</b>(<b>arrayX</b>, <b>arrayY</b>)
 */
public final class LinearRegressionFunction extends Fixed2ArgFunction {

    private static abstract class ValueArray implements ValueVector {
        private final int _size;
        protected ValueArray(int size) {
            _size = size;
        }

        @Override
        public ValueEval getItem(int index) {
            if (index < 0 || index > _size) {
                throw new IllegalArgumentException("Specified index " + index
                        + " is outside range (0.." + (_size - 1) + ")");
            }
            return getItemInternal(index);
        }
        protected abstract ValueEval getItemInternal(int index);

        public final int getSize() {
            return _size;
        }
    }

    private static final class SingleCellValueArray extends ValueArray {
        private final ValueEval _value;
        public SingleCellValueArray(ValueEval value) {
            super(1);
            _value = value;
        }

        protected ValueEval getItemInternal(int index) {
            return _value;
        }
    }

    private static final class RefValueArray extends ValueArray {
        private final RefEval _ref;
        private final int _width;
        public RefValueArray(RefEval ref) {
            super(ref.getNumberOfSheets());
            _ref = ref;
            _width = ref.getNumberOfSheets();
        }

        protected ValueEval getItemInternal(int index) {
            int sIx = (index % _width) + _ref.getFirstSheetIndex();
            return _ref.getInnerValueEval(sIx);
        }
    }

    private static final class AreaValueArray extends ValueArray {
        private final TwoDEval _ae;
        private final int _width;

        public AreaValueArray(TwoDEval ae) {
            super(ae.getWidth() * ae.getHeight());
            _ae = ae;
            _width = ae.getWidth();
        }

        protected ValueEval getItemInternal(int index) {
            int rowIx = index / _width;
            int colIx = index % _width;
            return _ae.getValue(rowIx, colIx);
        }
    }

    public enum FUNCTION {INTERCEPT, SLOPE}
    private final FUNCTION function;

    public LinearRegressionFunction(FUNCTION function) {
        this.function = function;
    }

    public ValueEval evaluate(int srcRowIndex, int srcColumnIndex,
            ValueEval arg0, ValueEval arg1) {
        double result;
        try {
            ValueVector vvY = createValueVector(arg0);
            ValueVector vvX = createValueVector(arg1);
            int size = vvX.getSize();
            if (size == 0 || vvY.getSize() != size) {
                return ErrorEval.NA;
            }
            result = evaluateInternal(vvX, vvY, size);
        } catch (EvaluationException e) {
            return e.getErrorEval();
        }
        if (Double.isNaN(result) || Double.isInfinite(result)) {
            return ErrorEval.NUM_ERROR;
        }
        return new NumberEval(result);
    }

    private double evaluateInternal(ValueVector x, ValueVector y, int size)
            throws EvaluationException {

        // error handling is as if the x is fully evaluated before y
        ErrorEval firstYerr = null;
        boolean accumlatedSome = false;
        // first pass: read in data, compute xbar and ybar
        double sumx = 0.0, sumy = 0.0;

        for (int i = 0; i < size; i++) {
            ValueEval vx = x.getItem(i);
            ValueEval vy = y.getItem(i);
            if (vx instanceof ErrorEval) {
                throw new EvaluationException((ErrorEval) vx);
            }
            if (vy instanceof ErrorEval) {
                if (firstYerr == null) {
                    firstYerr = (ErrorEval) vy;
                    continue;
                }
            }
            // only count pairs if both elements are numbers
            // all other combinations of value types are silently ignored
            if (vx instanceof NumberEval && vy instanceof NumberEval) {
                accumlatedSome = true;
                NumberEval nx = (NumberEval) vx;
                NumberEval ny = (NumberEval) vy;
                sumx  += nx.getNumberValue();
                sumy  += ny.getNumberValue();
            }
        }

        if (firstYerr != null) {
            throw new EvaluationException(firstYerr);
        }

        if (!accumlatedSome) {
            throw new EvaluationException(ErrorEval.DIV_ZERO);
        }

        double xbar = sumx / size;
        double ybar = sumy / size;

         // second pass: compute summary statistics
        double xxbar = 0.0, xybar = 0.0;
        for (int i = 0; i < size; i++) {
            ValueEval vx = x.getItem(i);
            ValueEval vy = y.getItem(i);

            // only count pairs if both elements are numbers
            // all other combinations of value types are silently ignored
            if (vx instanceof NumberEval && vy instanceof NumberEval) {
                NumberEval nx = (NumberEval) vx;
                NumberEval ny = (NumberEval) vy;
                xxbar += (nx.getNumberValue() - xbar) * (nx.getNumberValue() - xbar);
                xybar += (nx.getNumberValue() - xbar) * (ny.getNumberValue() - ybar);
            }
        }

        if (xxbar == 0 ) {
            throw new EvaluationException(ErrorEval.DIV_ZERO);
        }

        double beta1 = xybar / xxbar;
        double beta0 = ybar - beta1 * xbar;

        return (function == FUNCTION.INTERCEPT) ? beta0 : beta1;
    }

    private static ValueVector createValueVector(ValueEval arg) throws EvaluationException {
        if (arg instanceof ErrorEval) {
            throw new EvaluationException((ErrorEval) arg);
        }
        if (arg instanceof TwoDEval) {
            return new AreaValueArray((TwoDEval) arg);
        }
        if (arg instanceof RefEval) {
            return new RefValueArray((RefEval) arg);
        }
        return new SingleCellValueArray(arg);
    }
}

org/apache/poi/ss/formula/functions/LinearRegressionFunction.java

Or download all of them as a single archive file:

File name: poi-5.2.3-src.zip
File size: 2479830 bytes
Release date: 2022-09-09
Download 

 

What Is poi-ooxml-5.2.3.jar?

What Is poi-bin-5.2.3-20220909.zip?

Downloading and Installing Apache POI Java Library

⇑⇑ FAQ for Apache POI (Poor Obfuscation Implementation)

2017-04-04, 59005👍, 0💬