Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 11 jdk.dynalink.jmod - Dynamic Linking Module
JDK 11 jdk.dynalink.jmod is the JMOD file for JDK 11 Dynamic Linking module.
JDK 11 Dynamic Linking module compiled class files are stored in \fyicenter\jdk-11.0.1\jmods\jdk.dynalink.jmod.
JDK 11 Dynamic Linking module compiled class files are also linked and stored in the \fyicenter\jdk-11.0.1\lib\modules JImage file.
JDK 11 Dynamic Linking module source code files are stored in \fyicenter\jdk-11.0.1\lib\src.zip\jdk.dynalink.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ jdk/dynalink/beans/MaximallySpecific.java
/* * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ /* * * * * * */ /* Copyright 2009-2013 Attila Szegedi Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package jdk.dynalink.beans; import java.lang.invoke.MethodHandle; import java.lang.invoke.MethodType; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import jdk.dynalink.linker.ConversionComparator.Comparison; import jdk.dynalink.linker.LinkerServices; import jdk.dynalink.linker.support.TypeUtilities; /** * Utility class that encapsulates the algorithm for choosing the maximally specific methods. */ class MaximallySpecific { /** * Given a list of methods, returns a list of maximally specific methods. * * @param methods the list of methods * @param varArgs whether to assume the methods are varargs * @return the list of maximally specific methods. */ static List<SingleDynamicMethod> getMaximallySpecificMethods(final List<SingleDynamicMethod> methods, final boolean varArgs) { return getMaximallySpecificSingleDynamicMethods(methods, varArgs, null, null); } private abstract static class MethodTypeGetter<T> { abstract MethodType getMethodType(T t); } private static final MethodTypeGetter<MethodHandle> METHOD_HANDLE_TYPE_GETTER = new MethodTypeGetter<MethodHandle>() { @Override MethodType getMethodType(final MethodHandle t) { return t.type(); } }; private static final MethodTypeGetter<SingleDynamicMethod> DYNAMIC_METHOD_TYPE_GETTER = new MethodTypeGetter<SingleDynamicMethod>() { @Override MethodType getMethodType(final SingleDynamicMethod t) { return t.getMethodType(); } }; /** * Given a list of methods handles, returns a list of maximally specific methods, applying language-runtime * specific conversion preferences. * * @param methods the list of method handles * @param varArgs whether to assume the method handles are varargs * @param argTypes concrete argument types for the invocation * @return the list of maximally specific method handles. */ static List<MethodHandle> getMaximallySpecificMethodHandles(final List<MethodHandle> methods, final boolean varArgs, final Class<?>[] argTypes, final LinkerServices ls) { return getMaximallySpecificMethods(methods, varArgs, argTypes, ls, METHOD_HANDLE_TYPE_GETTER); } /** * Given a list of methods, returns a list of maximally specific methods, applying language-runtime specific * conversion preferences. * * @param methods the list of methods * @param varArgs whether to assume the methods are varargs * @param argTypes concrete argument types for the invocation * @return the list of maximally specific methods. */ static List<SingleDynamicMethod> getMaximallySpecificSingleDynamicMethods(final List<SingleDynamicMethod> methods, final boolean varArgs, final Class<?>[] argTypes, final LinkerServices ls) { return getMaximallySpecificMethods(methods, varArgs, argTypes, ls, DYNAMIC_METHOD_TYPE_GETTER); } /** * Given a list of methods, returns a list of maximally specific methods, applying language-runtime specific * conversion preferences. * * @param methods the list of methods * @param varArgs whether to assume the methods are varargs * @param argTypes concrete argument types for the invocation * @return the list of maximally specific methods. */ private static <T> List<T> getMaximallySpecificMethods(final List<T> methods, final boolean varArgs, final Class<?>[] argTypes, final LinkerServices ls, final MethodTypeGetter<T> methodTypeGetter) { if(methods.size() < 2) { return methods; } final LinkedList<T> maximals = new LinkedList<>(); for(final T m: methods) { final MethodType methodType = methodTypeGetter.getMethodType(m); boolean lessSpecific = false; for(final Iterator<T> maximal = maximals.iterator(); maximal.hasNext();) { final T max = maximal.next(); switch(isMoreSpecific(methodType, methodTypeGetter.getMethodType(max), varArgs, argTypes, ls)) { case TYPE_1_BETTER: { maximal.remove(); break; } case TYPE_2_BETTER: { lessSpecific = true; break; } case INDETERMINATE: { // do nothing break; } default: { throw new AssertionError(); } } } if(!lessSpecific) { maximals.addLast(m); } } return maximals; } private static Comparison isMoreSpecific(final MethodType t1, final MethodType t2, final boolean varArgs, final Class<?>[] argTypes, final LinkerServices ls) { final int pc1 = t1.parameterCount(); final int pc2 = t2.parameterCount(); assert varArgs || (pc1 == pc2) && (argTypes == null || argTypes.length == pc1); assert (argTypes == null) == (ls == null); final int maxPc = Math.max(Math.max(pc1, pc2), argTypes == null ? 0 : argTypes.length); boolean t1MoreSpecific = false; boolean t2MoreSpecific = false; // NOTE: Starting from 1 as overloaded method resolution doesn't depend on 0th element, which is the type of // 'this'. We're only dealing with instance methods here, not static methods. Actually, static methods will have // a fake 'this' of type StaticClass. for(int i = 1; i < maxPc; ++i) { final Class<?> c1 = getParameterClass(t1, pc1, i, varArgs); final Class<?> c2 = getParameterClass(t2, pc2, i, varArgs); if(c1 != c2) { final Comparison cmp = compare(c1, c2, argTypes, i, ls); if(cmp == Comparison.TYPE_1_BETTER && !t1MoreSpecific) { t1MoreSpecific = true; if(t2MoreSpecific) { return Comparison.INDETERMINATE; } } if(cmp == Comparison.TYPE_2_BETTER && !t2MoreSpecific) { t2MoreSpecific = true; if(t1MoreSpecific) { return Comparison.INDETERMINATE; } } } } if(t1MoreSpecific) { return Comparison.TYPE_1_BETTER; } else if(t2MoreSpecific) { return Comparison.TYPE_2_BETTER; } return Comparison.INDETERMINATE; } private static Comparison compare(final Class<?> c1, final Class<?> c2, final Class<?>[] argTypes, final int i, final LinkerServices cmp) { if(cmp != null) { final Comparison c = cmp.compareConversion(argTypes[i], c1, c2); if(c != Comparison.INDETERMINATE) { return c; } } if(TypeUtilities.isSubtype(c1, c2)) { return Comparison.TYPE_1_BETTER; } if(TypeUtilities.isSubtype(c2, c1)) { return Comparison.TYPE_2_BETTER; } return Comparison.INDETERMINATE; } private static Class<?> getParameterClass(final MethodType t, final int l, final int i, final boolean varArgs) { return varArgs && i >= l - 1 ? t.parameterType(l - 1).getComponentType() : t.parameterType(i); } }
⏎ jdk/dynalink/beans/MaximallySpecific.java
Or download all of them as a single archive file:
File name: jdk.dynalink-11.0.1-src.zip File size: 176192 bytes Release date: 2018-11-04 Download
⇒ JDK 11 jdk.editpad.jmod - Edit Pad Module
2020-02-29, 18465👍, 0💬
Popular Posts:
JDK 11 jdk.javadoc.jmod is the JMOD file for JDK 11 Java Document tool, which can be invoked by the ...
Apache Log4j 1.2 Bridge allows applications coded to use Log4j 1.2 API to use Log4j 2 instead. Bytec...
The Java Naming and Directory Interface (JNDI) is part of the Java platform, providing applications ...
commons-lang-1.0.1.jar is the JAR file for Apache Commons Lang 1.0.1, which provides a host of helpe...
iText is an ideal library for developers looking to enhance web- and other applications with dynamic...