Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries.
JRE (Java Runtime) 8 is the runtime environment included in JDK 8.
JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/Rectangle.java
/* * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt; import java.awt.geom.Rectangle2D; import java.beans.Transient; /** * A <code>Rectangle</code> specifies an area in a coordinate space that is * enclosed by the <code>Rectangle</code> object's upper-left point * {@code (x,y)} * in the coordinate space, its width, and its height. * <p> * A <code>Rectangle</code> object's <code>width</code> and * <code>height</code> are <code>public</code> fields. The constructors * that create a <code>Rectangle</code>, and the methods that can modify * one, do not prevent setting a negative value for width or height. * <p> * <a name="Empty"> * A {@code Rectangle} whose width or height is exactly zero has location * along those axes with zero dimension, but is otherwise considered empty. * The {@link #isEmpty} method will return true for such a {@code Rectangle}. * Methods which test if an empty {@code Rectangle} contains or intersects * a point or rectangle will always return false if either dimension is zero. * Methods which combine such a {@code Rectangle} with a point or rectangle * will include the location of the {@code Rectangle} on that axis in the * result as if the {@link #add(Point)} method were being called. * </a> * <p> * <a name="NonExistant"> * A {@code Rectangle} whose width or height is negative has neither * location nor dimension along those axes with negative dimensions. * Such a {@code Rectangle} is treated as non-existant along those axes. * Such a {@code Rectangle} is also empty with respect to containment * calculations and methods which test if it contains or intersects a * point or rectangle will always return false. * Methods which combine such a {@code Rectangle} with a point or rectangle * will ignore the {@code Rectangle} entirely in generating the result. * If two {@code Rectangle} objects are combined and each has a negative * dimension, the result will have at least one negative dimension. * </a> * <p> * Methods which affect only the location of a {@code Rectangle} will * operate on its location regardless of whether or not it has a negative * or zero dimension along either axis. * <p> * Note that a {@code Rectangle} constructed with the default no-argument * constructor will have dimensions of {@code 0x0} and therefore be empty. * That {@code Rectangle} will still have a location of {@code (0,0)} and * will contribute that location to the union and add operations. * Code attempting to accumulate the bounds of a set of points should * therefore initially construct the {@code Rectangle} with a specifically * negative width and height or it should use the first point in the set * to construct the {@code Rectangle}. * For example: * <pre>{@code * Rectangle bounds = new Rectangle(0, 0, -1, -1); * for (int i = 0; i < points.length; i++) { * bounds.add(points[i]); * } * }</pre> * or if we know that the points array contains at least one point: * <pre>{@code * Rectangle bounds = new Rectangle(points[0]); * for (int i = 1; i < points.length; i++) { * bounds.add(points[i]); * } * }</pre> * <p> * This class uses 32-bit integers to store its location and dimensions. * Frequently operations may produce a result that exceeds the range of * a 32-bit integer. * The methods will calculate their results in a way that avoids any * 32-bit overflow for intermediate results and then choose the best * representation to store the final results back into the 32-bit fields * which hold the location and dimensions. * The location of the result will be stored into the {@link #x} and * {@link #y} fields by clipping the true result to the nearest 32-bit value. * The values stored into the {@link #width} and {@link #height} dimension * fields will be chosen as the 32-bit values that encompass the largest * part of the true result as possible. * Generally this means that the dimension will be clipped independently * to the range of 32-bit integers except that if the location had to be * moved to store it into its pair of 32-bit fields then the dimensions * will be adjusted relative to the "best representation" of the location. * If the true result had a negative dimension and was therefore * non-existant along one or both axes, the stored dimensions will be * negative numbers in those axes. * If the true result had a location that could be represented within * the range of 32-bit integers, but zero dimension along one or both * axes, then the stored dimensions will be zero in those axes. * * @author Sami Shaio * @since 1.0 */ public class Rectangle extends Rectangle2D implements Shape, java.io.Serializable { /** * The X coordinate of the upper-left corner of the <code>Rectangle</code>. * * @serial * @see #setLocation(int, int) * @see #getLocation() * @since 1.0 */ public int x; /** * The Y coordinate of the upper-left corner of the <code>Rectangle</code>. * * @serial * @see #setLocation(int, int) * @see #getLocation() * @since 1.0 */ public int y; /** * The width of the <code>Rectangle</code>. * @serial * @see #setSize(int, int) * @see #getSize() * @since 1.0 */ public int width; /** * The height of the <code>Rectangle</code>. * * @serial * @see #setSize(int, int) * @see #getSize() * @since 1.0 */ public int height; /* * JDK 1.1 serialVersionUID */ private static final long serialVersionUID = -4345857070255674764L; /** * Initialize JNI field and method IDs */ private static native void initIDs(); static { /* ensure that the necessary native libraries are loaded */ Toolkit.loadLibraries(); if (!GraphicsEnvironment.isHeadless()) { initIDs(); } } /** * Constructs a new <code>Rectangle</code> whose upper-left corner * is at (0, 0) in the coordinate space, and whose width and * height are both zero. */ public Rectangle() { this(0, 0, 0, 0); } /** * Constructs a new <code>Rectangle</code>, initialized to match * the values of the specified <code>Rectangle</code>. * @param r the <code>Rectangle</code> from which to copy initial values * to a newly constructed <code>Rectangle</code> * @since 1.1 */ public Rectangle(Rectangle r) { this(r.x, r.y, r.width, r.height); } /** * Constructs a new <code>Rectangle</code> whose upper-left corner is * specified as * {@code (x,y)} and whose width and height * are specified by the arguments of the same name. * @param x the specified X coordinate * @param y the specified Y coordinate * @param width the width of the <code>Rectangle</code> * @param height the height of the <code>Rectangle</code> * @since 1.0 */ public Rectangle(int x, int y, int width, int height) { this.x = x; this.y = y; this.width = width; this.height = height; } /** * Constructs a new <code>Rectangle</code> whose upper-left corner * is at (0, 0) in the coordinate space, and whose width and * height are specified by the arguments of the same name. * @param width the width of the <code>Rectangle</code> * @param height the height of the <code>Rectangle</code> */ public Rectangle(int width, int height) { this(0, 0, width, height); } /** * Constructs a new <code>Rectangle</code> whose upper-left corner is * specified by the {@link Point} argument, and * whose width and height are specified by the * {@link Dimension} argument. * @param p a <code>Point</code> that is the upper-left corner of * the <code>Rectangle</code> * @param d a <code>Dimension</code>, representing the * width and height of the <code>Rectangle</code> */ public Rectangle(Point p, Dimension d) { this(p.x, p.y, d.width, d.height); } /** * Constructs a new <code>Rectangle</code> whose upper-left corner is the * specified <code>Point</code>, and whose width and height are both zero. * @param p a <code>Point</code> that is the top left corner * of the <code>Rectangle</code> */ public Rectangle(Point p) { this(p.x, p.y, 0, 0); } /** * Constructs a new <code>Rectangle</code> whose top left corner is * (0, 0) and whose width and height are specified * by the <code>Dimension</code> argument. * @param d a <code>Dimension</code>, specifying width and height */ public Rectangle(Dimension d) { this(0, 0, d.width, d.height); } /** * Returns the X coordinate of the bounding <code>Rectangle</code> in * <code>double</code> precision. * @return the X coordinate of the bounding <code>Rectangle</code>. */ public double getX() { return x; } /** * Returns the Y coordinate of the bounding <code>Rectangle</code> in * <code>double</code> precision. * @return the Y coordinate of the bounding <code>Rectangle</code>. */ public double getY() { return y; } /** * Returns the width of the bounding <code>Rectangle</code> in * <code>double</code> precision. * @return the width of the bounding <code>Rectangle</code>. */ public double getWidth() { return width; } /** * Returns the height of the bounding <code>Rectangle</code> in * <code>double</code> precision. * @return the height of the bounding <code>Rectangle</code>. */ public double getHeight() { return height; } /** * Gets the bounding <code>Rectangle</code> of this <code>Rectangle</code>. * <p> * This method is included for completeness, to parallel the * <code>getBounds</code> method of * {@link Component}. * @return a new <code>Rectangle</code>, equal to the * bounding <code>Rectangle</code> for this <code>Rectangle</code>. * @see java.awt.Component#getBounds * @see #setBounds(Rectangle) * @see #setBounds(int, int, int, int) * @since 1.1 */ @Transient public Rectangle getBounds() { return new Rectangle(x, y, width, height); } /** * {@inheritDoc} * @since 1.2 */ public Rectangle2D getBounds2D() { return new Rectangle(x, y, width, height); } /** * Sets the bounding <code>Rectangle</code> of this <code>Rectangle</code> * to match the specified <code>Rectangle</code>. * <p> * This method is included for completeness, to parallel the * <code>setBounds</code> method of <code>Component</code>. * @param r the specified <code>Rectangle</code> * @see #getBounds * @see java.awt.Component#setBounds(java.awt.Rectangle) * @since 1.1 */ public void setBounds(Rectangle r) { setBounds(r.x, r.y, r.width, r.height); } /** * Sets the bounding <code>Rectangle</code> of this * <code>Rectangle</code> to the specified * <code>x</code>, <code>y</code>, <code>width</code>, * and <code>height</code>. * <p> * This method is included for completeness, to parallel the * <code>setBounds</code> method of <code>Component</code>. * @param x the new X coordinate for the upper-left * corner of this <code>Rectangle</code> * @param y the new Y coordinate for the upper-left * corner of this <code>Rectangle</code> * @param width the new width for this <code>Rectangle</code> * @param height the new height for this <code>Rectangle</code> * @see #getBounds * @see java.awt.Component#setBounds(int, int, int, int) * @since 1.1 */ public void setBounds(int x, int y, int width, int height) { reshape(x, y, width, height); } /** * Sets the bounds of this {@code Rectangle} to the integer bounds * which encompass the specified {@code x}, {@code y}, {@code width}, * and {@code height}. * If the parameters specify a {@code Rectangle} that exceeds the * maximum range of integers, the result will be the best * representation of the specified {@code Rectangle} intersected * with the maximum integer bounds. * @param x the X coordinate of the upper-left corner of * the specified rectangle * @param y the Y coordinate of the upper-left corner of * the specified rectangle * @param width the width of the specified rectangle * @param height the new height of the specified rectangle */ public void setRect(double x, double y, double width, double height) { int newx, newy, neww, newh; if (x > 2.0 * Integer.MAX_VALUE) { // Too far in positive X direction to represent... // We cannot even reach the left side of the specified // rectangle even with both x & width set to MAX_VALUE. // The intersection with the "maximal integer rectangle" // is non-existant so we should use a width < 0. // REMIND: Should we try to determine a more "meaningful" // adjusted value for neww than just "-1"? newx = Integer.MAX_VALUE; neww = -1; } else { newx = clip(x, false); if (width >= 0) width += x-newx; neww = clip(width, width >= 0); } if (y > 2.0 * Integer.MAX_VALUE) { // Too far in positive Y direction to represent... newy = Integer.MAX_VALUE; newh = -1; } else { newy = clip(y, false); if (height >= 0) height += y-newy; newh = clip(height, height >= 0); } reshape(newx, newy, neww, newh); } // Return best integer representation for v, clipped to integer // range and floor-ed or ceiling-ed, depending on the boolean. private static int clip(double v, boolean doceil) { if (v <= Integer.MIN_VALUE) { return Integer.MIN_VALUE; } if (v >= Integer.MAX_VALUE) { return Integer.MAX_VALUE; } return (int) (doceil ? Math.ceil(v) : Math.floor(v)); } /** * Sets the bounding <code>Rectangle</code> of this * <code>Rectangle</code> to the specified * <code>x</code>, <code>y</code>, <code>width</code>, * and <code>height</code>. * <p> * @param x the new X coordinate for the upper-left * corner of this <code>Rectangle</code> * @param y the new Y coordinate for the upper-left * corner of this <code>Rectangle</code> * @param width the new width for this <code>Rectangle</code> * @param height the new height for this <code>Rectangle</code> * @deprecated As of JDK version 1.1, * replaced by <code>setBounds(int, int, int, int)</code>. */ @Deprecated public void reshape(int x, int y, int width, int height) { this.x = x; this.y = y; this.width = width; this.height = height; } /** * Returns the location of this <code>Rectangle</code>. * <p> * This method is included for completeness, to parallel the * <code>getLocation</code> method of <code>Component</code>. * @return the <code>Point</code> that is the upper-left corner of * this <code>Rectangle</code>. * @see java.awt.Component#getLocation * @see #setLocation(Point) * @see #setLocation(int, int) * @since 1.1 */ public Point getLocation() { return new Point(x, y); } /** * Moves this <code>Rectangle</code> to the specified location. * <p> * This method is included for completeness, to parallel the * <code>setLocation</code> method of <code>Component</code>. * @param p the <code>Point</code> specifying the new location * for this <code>Rectangle</code> * @see java.awt.Component#setLocation(java.awt.Point) * @see #getLocation * @since 1.1 */ public void setLocation(Point p) { setLocation(p.x, p.y); } /** * Moves this <code>Rectangle</code> to the specified location. * <p> * This method is included for completeness, to parallel the * <code>setLocation</code> method of <code>Component</code>. * @param x the X coordinate of the new location * @param y the Y coordinate of the new location * @see #getLocation * @see java.awt.Component#setLocation(int, int) * @since 1.1 */ public void setLocation(int x, int y) { move(x, y); } /** * Moves this <code>Rectangle</code> to the specified location. * <p> * @param x the X coordinate of the new location * @param y the Y coordinate of the new location * @deprecated As of JDK version 1.1, * replaced by <code>setLocation(int, int)</code>. */ @Deprecated public void move(int x, int y) { this.x = x; this.y = y; } /** * Translates this <code>Rectangle</code> the indicated distance, * to the right along the X coordinate axis, and * downward along the Y coordinate axis. * @param dx the distance to move this <code>Rectangle</code> * along the X axis * @param dy the distance to move this <code>Rectangle</code> * along the Y axis * @see java.awt.Rectangle#setLocation(int, int) * @see java.awt.Rectangle#setLocation(java.awt.Point) */ public void translate(int dx, int dy) { int oldv = this.x; int newv = oldv + dx; if (dx < 0) { // moving leftward if (newv > oldv) { // negative overflow // Only adjust width if it was valid (>= 0). if (width >= 0) { // The right edge is now conceptually at // newv+width, but we may move newv to prevent // overflow. But we want the right edge to // remain at its new location in spite of the // clipping. Think of the following adjustment // conceptually the same as: // width += newv; newv = MIN_VALUE; width -= newv; width += newv - Integer.MIN_VALUE; // width may go negative if the right edge went past // MIN_VALUE, but it cannot overflow since it cannot // have moved more than MIN_VALUE and any non-negative // number + MIN_VALUE does not overflow. } newv = Integer.MIN_VALUE; } } else { // moving rightward (or staying still) if (newv < oldv) { // positive overflow if (width >= 0) { // Conceptually the same as: // width += newv; newv = MAX_VALUE; width -= newv; width += newv - Integer.MAX_VALUE; // With large widths and large displacements // we may overflow so we need to check it. if (width < 0) width = Integer.MAX_VALUE; } newv = Integer.MAX_VALUE; } } this.x = newv; oldv = this.y; newv = oldv + dy; if (dy < 0) { // moving upward if (newv > oldv) { // negative overflow if (height >= 0) { height += newv - Integer.MIN_VALUE; // See above comment about no overflow in this case } newv = Integer.MIN_VALUE; } } else { // moving downward (or staying still) if (newv < oldv) { // positive overflow if (height >= 0) { height += newv - Integer.MAX_VALUE; if (height < 0) height = Integer.MAX_VALUE; } newv = Integer.MAX_VALUE; } } this.y = newv; } /** * Gets the size of this <code>Rectangle</code>, represented by * the returned <code>Dimension</code>. * <p> * This method is included for completeness, to parallel the * <code>getSize</code> method of <code>Component</code>. * @return a <code>Dimension</code>, representing the size of * this <code>Rectangle</code>. * @see java.awt.Component#getSize * @see #setSize(Dimension) * @see #setSize(int, int) * @since 1.1 */ public Dimension getSize() { return new Dimension(width, height); } /** * Sets the size of this <code>Rectangle</code> to match the * specified <code>Dimension</code>. * <p> * This method is included for completeness, to parallel the * <code>setSize</code> method of <code>Component</code>. * @param d the new size for the <code>Dimension</code> object * @see java.awt.Component#setSize(java.awt.Dimension) * @see #getSize * @since 1.1 */ public void setSize(Dimension d) { setSize(d.width, d.height); } /** * Sets the size of this <code>Rectangle</code> to the specified * width and height. * <p> * This method is included for completeness, to parallel the * <code>setSize</code> method of <code>Component</code>. * @param width the new width for this <code>Rectangle</code> * @param height the new height for this <code>Rectangle</code> * @see java.awt.Component#setSize(int, int) * @see #getSize * @since 1.1 */ public void setSize(int width, int height) { resize(width, height); } /** * Sets the size of this <code>Rectangle</code> to the specified * width and height. * <p> * @param width the new width for this <code>Rectangle</code> * @param height the new height for this <code>Rectangle</code> * @deprecated As of JDK version 1.1, * replaced by <code>setSize(int, int)</code>. */ @Deprecated public void resize(int width, int height) { this.width = width; this.height = height; } /** * Checks whether or not this <code>Rectangle</code> contains the * specified <code>Point</code>. * @param p the <code>Point</code> to test * @return <code>true</code> if the specified <code>Point</code> * is inside this <code>Rectangle</code>; * <code>false</code> otherwise. * @since 1.1 */ public boolean contains(Point p) { return contains(p.x, p.y); } /** * Checks whether or not this <code>Rectangle</code> contains the * point at the specified location {@code (x,y)}. * * @param x the specified X coordinate * @param y the specified Y coordinate * @return <code>true</code> if the point * {@code (x,y)} is inside this * <code>Rectangle</code>; * <code>false</code> otherwise. * @since 1.1 */ public boolean contains(int x, int y) { return inside(x, y); } /** * Checks whether or not this <code>Rectangle</code> entirely contains * the specified <code>Rectangle</code>. * * @param r the specified <code>Rectangle</code> * @return <code>true</code> if the <code>Rectangle</code> * is contained entirely inside this <code>Rectangle</code>; * <code>false</code> otherwise * @since 1.2 */ public boolean contains(Rectangle r) { return contains(r.x, r.y, r.width, r.height); } /** * Checks whether this <code>Rectangle</code> entirely contains * the <code>Rectangle</code> * at the specified location {@code (X,Y)} with the * specified dimensions {@code (W,H)}. * @param X the specified X coordinate * @param Y the specified Y coordinate * @param W the width of the <code>Rectangle</code> * @param H the height of the <code>Rectangle</code> * @return <code>true</code> if the <code>Rectangle</code> specified by * {@code (X, Y, W, H)} * is entirely enclosed inside this <code>Rectangle</code>; * <code>false</code> otherwise. * @since 1.1 */ public boolean contains(int X, int Y, int W, int H) { int w = this.width; int h = this.height; if ((w | h | W | H) < 0) { // At least one of the dimensions is negative... return false; } // Note: if any dimension is zero, tests below must return false... int x = this.x; int y = this.y; if (X < x || Y < y) { return false; } w += x; W += X; if (W <= X) { // X+W overflowed or W was zero, return false if... // either original w or W was zero or // x+w did not overflow or // the overflowed x+w is smaller than the overflowed X+W if (w >= x || W > w) return false; } else { // X+W did not overflow and W was not zero, return false if... // original w was zero or // x+w did not overflow and x+w is smaller than X+W if (w >= x && W > w) return false; } h += y; H += Y; if (H <= Y) { if (h >= y || H > h) return false; } else { if (h >= y && H > h) return false; } return true; } /** * Checks whether or not this <code>Rectangle</code> contains the * point at the specified location {@code (X,Y)}. * * @param X the specified X coordinate * @param Y the specified Y coordinate * @return <code>true</code> if the point * {@code (X,Y)} is inside this * <code>Rectangle</code>; * <code>false</code> otherwise. * @deprecated As of JDK version 1.1, * replaced by <code>contains(int, int)</code>. */ @Deprecated public boolean inside(int X, int Y) { int w = this.width; int h = this.height; if ((w | h) < 0) { // At least one of the dimensions is negative... return false; } // Note: if either dimension is zero, tests below must return false... int x = this.x; int y = this.y; if (X < x || Y < y) { return false; } w += x; h += y; // overflow || intersect return ((w < x || w > X) && (h < y || h > Y)); } /** * Determines whether or not this <code>Rectangle</code> and the specified * <code>Rectangle</code> intersect. Two rectangles intersect if * their intersection is nonempty. * * @param r the specified <code>Rectangle</code> * @return <code>true</code> if the specified <code>Rectangle</code> * and this <code>Rectangle</code> intersect; * <code>false</code> otherwise. */ public boolean intersects(Rectangle r) { int tw = this.width; int th = this.height; int rw = r.width; int rh = r.height; if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) { return false; } int tx = this.x; int ty = this.y; int rx = r.x; int ry = r.y; rw += rx; rh += ry; tw += tx; th += ty; // overflow || intersect return ((rw < rx || rw > tx) && (rh < ry || rh > ty) && (tw < tx || tw > rx) && (th < ty || th > ry)); } /** * Computes the intersection of this <code>Rectangle</code> with the * specified <code>Rectangle</code>. Returns a new <code>Rectangle</code> * that represents the intersection of the two rectangles. * If the two rectangles do not intersect, the result will be * an empty rectangle. * * @param r the specified <code>Rectangle</code> * @return the largest <code>Rectangle</code> contained in both the * specified <code>Rectangle</code> and in * this <code>Rectangle</code>; or if the rectangles * do not intersect, an empty rectangle. */ public Rectangle intersection(Rectangle r) { int tx1 = this.x; int ty1 = this.y; int rx1 = r.x; int ry1 = r.y; long tx2 = tx1; tx2 += this.width; long ty2 = ty1; ty2 += this.height; long rx2 = rx1; rx2 += r.width; long ry2 = ry1; ry2 += r.height; if (tx1 < rx1) tx1 = rx1; if (ty1 < ry1) ty1 = ry1; if (tx2 > rx2) tx2 = rx2; if (ty2 > ry2) ty2 = ry2; tx2 -= tx1; ty2 -= ty1; // tx2,ty2 will never overflow (they will never be // larger than the smallest of the two source w,h) // they might underflow, though... if (tx2 < Integer.MIN_VALUE) tx2 = Integer.MIN_VALUE; if (ty2 < Integer.MIN_VALUE) ty2 = Integer.MIN_VALUE; return new Rectangle(tx1, ty1, (int) tx2, (int) ty2); } /** * Computes the union of this <code>Rectangle</code> with the * specified <code>Rectangle</code>. Returns a new * <code>Rectangle</code> that * represents the union of the two rectangles. * <p> * If either {@code Rectangle} has any dimension less than zero * the rules for <a href=#NonExistant>non-existant</a> rectangles * apply. * If only one has a dimension less than zero, then the result * will be a copy of the other {@code Rectangle}. * If both have dimension less than zero, then the result will * have at least one dimension less than zero. * <p> * If the resulting {@code Rectangle} would have a dimension * too large to be expressed as an {@code int}, the result * will have a dimension of {@code Integer.MAX_VALUE} along * that dimension. * @param r the specified <code>Rectangle</code> * @return the smallest <code>Rectangle</code> containing both * the specified <code>Rectangle</code> and this * <code>Rectangle</code>. */ public Rectangle union(Rectangle r) { long tx2 = this.width; long ty2 = this.height; if ((tx2 | ty2) < 0) { // This rectangle has negative dimensions... // If r has non-negative dimensions then it is the answer. // If r is non-existant (has a negative dimension), then both // are non-existant and we can return any non-existant rectangle // as an answer. Thus, returning r meets that criterion. // Either way, r is our answer. return new Rectangle(r); } long rx2 = r.width; long ry2 = r.height; if ((rx2 | ry2) < 0) { return new Rectangle(this); } int tx1 = this.x; int ty1 = this.y; tx2 += tx1; ty2 += ty1; int rx1 = r.x; int ry1 = r.y; rx2 += rx1; ry2 += ry1; if (tx1 > rx1) tx1 = rx1; if (ty1 > ry1) ty1 = ry1; if (tx2 < rx2) tx2 = rx2; if (ty2 < ry2) ty2 = ry2; tx2 -= tx1; ty2 -= ty1; // tx2,ty2 will never underflow since both original rectangles // were already proven to be non-empty // they might overflow, though... if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE; if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE; return new Rectangle(tx1, ty1, (int) tx2, (int) ty2); } /** * Adds a point, specified by the integer arguments {@code newx,newy} * to the bounds of this {@code Rectangle}. * <p> * If this {@code Rectangle} has any dimension less than zero, * the rules for <a href=#NonExistant>non-existant</a> * rectangles apply. * In that case, the new bounds of this {@code Rectangle} will * have a location equal to the specified coordinates and * width and height equal to zero. * <p> * After adding a point, a call to <code>contains</code> with the * added point as an argument does not necessarily return * <code>true</code>. The <code>contains</code> method does not * return <code>true</code> for points on the right or bottom * edges of a <code>Rectangle</code>. Therefore, if the added point * falls on the right or bottom edge of the enlarged * <code>Rectangle</code>, <code>contains</code> returns * <code>false</code> for that point. * If the specified point must be contained within the new * {@code Rectangle}, a 1x1 rectangle should be added instead: * <pre> * r.add(newx, newy, 1, 1); * </pre> * @param newx the X coordinate of the new point * @param newy the Y coordinate of the new point */ public void add(int newx, int newy) { if ((width | height) < 0) { this.x = newx; this.y = newy; this.width = this.height = 0; return; } int x1 = this.x; int y1 = this.y; long x2 = this.width; long y2 = this.height; x2 += x1; y2 += y1; if (x1 > newx) x1 = newx; if (y1 > newy) y1 = newy; if (x2 < newx) x2 = newx; if (y2 < newy) y2 = newy; x2 -= x1; y2 -= y1; if (x2 > Integer.MAX_VALUE) x2 = Integer.MAX_VALUE; if (y2 > Integer.MAX_VALUE) y2 = Integer.MAX_VALUE; reshape(x1, y1, (int) x2, (int) y2); } /** * Adds the specified {@code Point} to the bounds of this * {@code Rectangle}. * <p> * If this {@code Rectangle} has any dimension less than zero, * the rules for <a href=#NonExistant>non-existant</a> * rectangles apply. * In that case, the new bounds of this {@code Rectangle} will * have a location equal to the coordinates of the specified * {@code Point} and width and height equal to zero. * <p> * After adding a <code>Point</code>, a call to <code>contains</code> * with the added <code>Point</code> as an argument does not * necessarily return <code>true</code>. The <code>contains</code> * method does not return <code>true</code> for points on the right * or bottom edges of a <code>Rectangle</code>. Therefore if the added * <code>Point</code> falls on the right or bottom edge of the * enlarged <code>Rectangle</code>, <code>contains</code> returns * <code>false</code> for that <code>Point</code>. * If the specified point must be contained within the new * {@code Rectangle}, a 1x1 rectangle should be added instead: * <pre> * r.add(pt.x, pt.y, 1, 1); * </pre> * @param pt the new <code>Point</code> to add to this * <code>Rectangle</code> */ public void add(Point pt) { add(pt.x, pt.y); } /** * Adds a <code>Rectangle</code> to this <code>Rectangle</code>. * The resulting <code>Rectangle</code> is the union of the two * rectangles. * <p> * If either {@code Rectangle} has any dimension less than 0, the * result will have the dimensions of the other {@code Rectangle}. * If both {@code Rectangle}s have at least one dimension less * than 0, the result will have at least one dimension less than 0. * <p> * If either {@code Rectangle} has one or both dimensions equal * to 0, the result along those axes with 0 dimensions will be * equivalent to the results obtained by adding the corresponding * origin coordinate to the result rectangle along that axis, * similar to the operation of the {@link #add(Point)} method, * but contribute no further dimension beyond that. * <p> * If the resulting {@code Rectangle} would have a dimension * too large to be expressed as an {@code int}, the result * will have a dimension of {@code Integer.MAX_VALUE} along * that dimension. * @param r the specified <code>Rectangle</code> */ public void add(Rectangle r) { long tx2 = this.width; long ty2 = this.height; if ((tx2 | ty2) < 0) { reshape(r.x, r.y, r.width, r.height); } long rx2 = r.width; long ry2 = r.height; if ((rx2 | ry2) < 0) { return; } int tx1 = this.x; int ty1 = this.y; tx2 += tx1; ty2 += ty1; int rx1 = r.x; int ry1 = r.y; rx2 += rx1; ry2 += ry1; if (tx1 > rx1) tx1 = rx1; if (ty1 > ry1) ty1 = ry1; if (tx2 < rx2) tx2 = rx2; if (ty2 < ry2) ty2 = ry2; tx2 -= tx1; ty2 -= ty1; // tx2,ty2 will never underflow since both original // rectangles were non-empty // they might overflow, though... if (tx2 > Integer.MAX_VALUE) tx2 = Integer.MAX_VALUE; if (ty2 > Integer.MAX_VALUE) ty2 = Integer.MAX_VALUE; reshape(tx1, ty1, (int) tx2, (int) ty2); } /** * Resizes the <code>Rectangle</code> both horizontally and vertically. * <p> * This method modifies the <code>Rectangle</code> so that it is * <code>h</code> units larger on both the left and right side, * and <code>v</code> units larger at both the top and bottom. * <p> * The new <code>Rectangle</code> has {@code (x - h, y - v)} * as its upper-left corner, * width of {@code (width + 2h)}, * and a height of {@code (height + 2v)}. * <p> * If negative values are supplied for <code>h</code> and * <code>v</code>, the size of the <code>Rectangle</code> * decreases accordingly. * The {@code grow} method will check for integer overflow * and underflow, but does not check whether the resulting * values of {@code width} and {@code height} grow * from negative to non-negative or shrink from non-negative * to negative. * @param h the horizontal expansion * @param v the vertical expansion */ public void grow(int h, int v) { long x0 = this.x; long y0 = this.y; long x1 = this.width; long y1 = this.height; x1 += x0; y1 += y0; x0 -= h; y0 -= v; x1 += h; y1 += v; if (x1 < x0) { // Non-existant in X direction // Final width must remain negative so subtract x0 before // it is clipped so that we avoid the risk that the clipping // of x0 will reverse the ordering of x0 and x1. x1 -= x0; if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE; if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE; else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE; } else { // (x1 >= x0) // Clip x0 before we subtract it from x1 in case the clipping // affects the representable area of the rectangle. if (x0 < Integer.MIN_VALUE) x0 = Integer.MIN_VALUE; else if (x0 > Integer.MAX_VALUE) x0 = Integer.MAX_VALUE; x1 -= x0; // The only way x1 can be negative now is if we clipped // x0 against MIN and x1 is less than MIN - in which case // we want to leave the width negative since the result // did not intersect the representable area. if (x1 < Integer.MIN_VALUE) x1 = Integer.MIN_VALUE; else if (x1 > Integer.MAX_VALUE) x1 = Integer.MAX_VALUE; } if (y1 < y0) { // Non-existant in Y direction y1 -= y0; if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE; if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE; else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE; } else { // (y1 >= y0) if (y0 < Integer.MIN_VALUE) y0 = Integer.MIN_VALUE; else if (y0 > Integer.MAX_VALUE) y0 = Integer.MAX_VALUE; y1 -= y0; if (y1 < Integer.MIN_VALUE) y1 = Integer.MIN_VALUE; else if (y1 > Integer.MAX_VALUE) y1 = Integer.MAX_VALUE; } reshape((int) x0, (int) y0, (int) x1, (int) y1); } /** * {@inheritDoc} * @since 1.2 */ public boolean isEmpty() { return (width <= 0) || (height <= 0); } /** * {@inheritDoc} * @since 1.2 */ public int outcode(double x, double y) { /* * Note on casts to double below. If the arithmetic of * x+w or y+h is done in int, then we may get integer * overflow. By converting to double before the addition * we force the addition to be carried out in double to * avoid overflow in the comparison. * * See bug 4320890 for problems that this can cause. */ int out = 0; if (this.width <= 0) { out |= OUT_LEFT | OUT_RIGHT; } else if (x < this.x) { out |= OUT_LEFT; } else if (x > this.x + (double) this.width) { out |= OUT_RIGHT; } if (this.height <= 0) { out |= OUT_TOP | OUT_BOTTOM; } else if (y < this.y) { out |= OUT_TOP; } else if (y > this.y + (double) this.height) { out |= OUT_BOTTOM; } return out; } /** * {@inheritDoc} * @since 1.2 */ public Rectangle2D createIntersection(Rectangle2D r) { if (r instanceof Rectangle) { return intersection((Rectangle) r); } Rectangle2D dest = new Rectangle2D.Double(); Rectangle2D.intersect(this, r, dest); return dest; } /** * {@inheritDoc} * @since 1.2 */ public Rectangle2D createUnion(Rectangle2D r) { if (r instanceof Rectangle) { return union((Rectangle) r); } Rectangle2D dest = new Rectangle2D.Double(); Rectangle2D.union(this, r, dest); return dest; } /** * Checks whether two rectangles are equal. * <p> * The result is <code>true</code> if and only if the argument is not * <code>null</code> and is a <code>Rectangle</code> object that has the * same upper-left corner, width, and height as * this <code>Rectangle</code>. * @param obj the <code>Object</code> to compare with * this <code>Rectangle</code> * @return <code>true</code> if the objects are equal; * <code>false</code> otherwise. */ public boolean equals(Object obj) { if (obj instanceof Rectangle) { Rectangle r = (Rectangle)obj; return ((x == r.x) && (y == r.y) && (width == r.width) && (height == r.height)); } return super.equals(obj); } /** * Returns a <code>String</code> representing this * <code>Rectangle</code> and its values. * @return a <code>String</code> representing this * <code>Rectangle</code> object's coordinate and size values. */ public String toString() { return getClass().getName() + "[x=" + x + ",y=" + y + ",width=" + width + ",height=" + height + "]"; } }
⏎ java/awt/Rectangle.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2023-08-23, 308970👍, 4💬
Popular Posts:
JAX-WS is an API for building web services and clients. It is the next generation Web Services API r...
JDK 11 jdk.internal.JVM Stat.jmod is the JMOD file for JDK 11 Internal Jvmstat module. JDK 11 Intern...
What Is activation.jar? I heard it's related to JAF (JavaBeans Activation Framework) 1.0.2? The if y...
iText is an ideal library for developers looking to enhance web- and other applications with dynamic...
maven-core-3.8.6.jar is the JAR file for Apache Maven 3.8.6 Core module. Apache Maven is a software ...