Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JRE 8 rt.jar - javax.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries. JRE (Java Runtime) 8 is the runtime environment included in JDK 8. JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the javax.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ javax/management/openmbean/ArrayType.java
/* * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package javax.management.openmbean; import java.io.ObjectStreamException; import java.lang.reflect.Array; /** * The <code>ArrayType</code> class is the <i>open type</i> class whose instances describe * all <i>open data</i> values which are n-dimensional arrays of <i>open data</i> values. * <p> * Examples of valid {@code ArrayType} instances are: * <pre>{@code * // 2-dimension array of java.lang.String * ArrayType<String[][]> a1 = new ArrayType<String[][]>(2, SimpleType.STRING); * * // 1-dimension array of int * ArrayType<int[]> a2 = new ArrayType<int[]>(SimpleType.INTEGER, true); * * // 1-dimension array of java.lang.Integer * ArrayType<Integer[]> a3 = new ArrayType<Integer[]>(SimpleType.INTEGER, false); * * // 4-dimension array of int * ArrayType<int[][][][]> a4 = new ArrayType<int[][][][]>(3, a2); * * // 4-dimension array of java.lang.Integer * ArrayType<Integer[][][][]> a5 = new ArrayType<Integer[][][][]>(3, a3); * * // 1-dimension array of java.lang.String * ArrayType<String[]> a6 = new ArrayType<String[]>(SimpleType.STRING, false); * * // 1-dimension array of long * ArrayType<long[]> a7 = new ArrayType<long[]>(SimpleType.LONG, true); * * // 1-dimension array of java.lang.Integer * ArrayType<Integer[]> a8 = ArrayType.getArrayType(SimpleType.INTEGER); * * // 2-dimension array of java.lang.Integer * ArrayType<Integer[][]> a9 = ArrayType.getArrayType(a8); * * // 2-dimension array of int * ArrayType<int[][]> a10 = ArrayType.getPrimitiveArrayType(int[][].class); * * // 3-dimension array of int * ArrayType<int[][][]> a11 = ArrayType.getArrayType(a10); * * // 1-dimension array of float * ArrayType<float[]> a12 = ArrayType.getPrimitiveArrayType(float[].class); * * // 2-dimension array of float * ArrayType<float[][]> a13 = ArrayType.getArrayType(a12); * * // 1-dimension array of javax.management.ObjectName * ArrayType<ObjectName[]> a14 = ArrayType.getArrayType(SimpleType.OBJECTNAME); * * // 2-dimension array of javax.management.ObjectName * ArrayType<ObjectName[][]> a15 = ArrayType.getArrayType(a14); * * // 3-dimension array of java.lang.String * ArrayType<String[][][]> a16 = new ArrayType<String[][][]>(3, SimpleType.STRING); * * // 1-dimension array of java.lang.String * ArrayType<String[]> a17 = new ArrayType<String[]>(1, SimpleType.STRING); * * // 2-dimension array of java.lang.String * ArrayType<String[][]> a18 = new ArrayType<String[][]>(1, a17); * * // 3-dimension array of java.lang.String * ArrayType<String[][][]> a19 = new ArrayType<String[][][]>(1, a18); * }</pre> * * * @since 1.5 */ /* Generification note: we could have defined a type parameter that is the element type, with class ArrayType<E> extends OpenType<E[]>. However, that doesn't buy us all that much. We can't say public OpenType<E> getElementOpenType() because this ArrayType could be a multi-dimensional array. For example, if we had ArrayType(2, SimpleType.INTEGER) then E would have to be Integer[], while getElementOpenType() would return SimpleType.INTEGER, which is an OpenType<Integer>. Furthermore, we would like to support int[] (as well as Integer[]) as an Open Type (RFE 5045358). We would want this to be an OpenType<int[]> which can't be expressed as <E[]> because E can't be a primitive type like int. */ public class ArrayType<T> extends OpenType<T> { /* Serial version */ static final long serialVersionUID = 720504429830309770L; /** * @serial The dimension of arrays described by this {@link ArrayType} * instance. */ private int dimension; /** * @serial The <i>open type</i> of element values contained in the arrays * described by this {@link ArrayType} instance. */ private OpenType<?> elementType; /** * @serial This flag indicates whether this {@link ArrayType} * describes a primitive array. * * @since 1.6 */ private boolean primitiveArray; private transient Integer myHashCode = null; // As this instance is immutable, these two values private transient String myToString = null; // need only be calculated once. // indexes refering to columns in the PRIMITIVE_ARRAY_TYPES table. private static final int PRIMITIVE_WRAPPER_NAME_INDEX = 0; private static final int PRIMITIVE_TYPE_NAME_INDEX = 1; private static final int PRIMITIVE_TYPE_KEY_INDEX = 2; private static final int PRIMITIVE_OPEN_TYPE_INDEX = 3; private static final Object[][] PRIMITIVE_ARRAY_TYPES = { { Boolean.class.getName(), boolean.class.getName(), "Z", SimpleType.BOOLEAN }, { Character.class.getName(), char.class.getName(), "C", SimpleType.CHARACTER }, { Byte.class.getName(), byte.class.getName(), "B", SimpleType.BYTE }, { Short.class.getName(), short.class.getName(), "S", SimpleType.SHORT }, { Integer.class.getName(), int.class.getName(), "I", SimpleType.INTEGER }, { Long.class.getName(), long.class.getName(), "J", SimpleType.LONG }, { Float.class.getName(), float.class.getName(), "F", SimpleType.FLOAT }, { Double.class.getName(), double.class.getName(), "D", SimpleType.DOUBLE } }; static boolean isPrimitiveContentType(final String primitiveKey) { for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (typeDescr[PRIMITIVE_TYPE_KEY_INDEX].equals(primitiveKey)) { return true; } } return false; } /** * Return the key used to identify the element type in * arrays - e.g. "Z" for boolean, "C" for char etc... * @param elementClassName the wrapper class name of the array * element ("Boolean", "Character", etc...) * @return the key corresponding to the given type ("Z", "C", etc...) * return null if the given elementClassName is not a primitive * wrapper class name. **/ static String getPrimitiveTypeKey(String elementClassName) { for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (elementClassName.equals(typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX])) return (String)typeDescr[PRIMITIVE_TYPE_KEY_INDEX]; } return null; } /** * Return the primitive type name corresponding to the given wrapper class. * e.g. "boolean" for "Boolean", "char" for "Character" etc... * @param elementClassName the type of the array element ("Boolean", * "Character", etc...) * @return the primitive type name corresponding to the given wrapper class * ("boolean", "char", etc...) * return null if the given elementClassName is not a primitive * wrapper type name. **/ static String getPrimitiveTypeName(String elementClassName) { for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (elementClassName.equals(typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX])) return (String)typeDescr[PRIMITIVE_TYPE_NAME_INDEX]; } return null; } /** * Return the primitive open type corresponding to the given primitive type. * e.g. SimpleType.BOOLEAN for "boolean", SimpleType.CHARACTER for * "char", etc... * @param primitiveTypeName the primitive type of the array element ("boolean", * "char", etc...) * @return the OpenType corresponding to the given primitive type name * (SimpleType.BOOLEAN, SimpleType.CHARACTER, etc...) * return null if the given elementClassName is not a primitive * type name. **/ static SimpleType<?> getPrimitiveOpenType(String primitiveTypeName) { for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (primitiveTypeName.equals(typeDescr[PRIMITIVE_TYPE_NAME_INDEX])) return (SimpleType<?>)typeDescr[PRIMITIVE_OPEN_TYPE_INDEX]; } return null; } /* *** Constructor *** */ /** * Constructs an <tt>ArrayType</tt> instance describing <i>open data</i> values which are * arrays with dimension <var>dimension</var> of elements whose <i>open type</i> is <var>elementType</var>. * <p> * When invoked on an <tt>ArrayType</tt> instance, the {@link OpenType#getClassName() getClassName} method * returns the class name of the array instances it describes (following the rules defined by the * {@link Class#getName() getName} method of <code>java.lang.Class</code>), not the class name of the array elements * (which is returned by a call to <tt>getElementOpenType().getClassName()</tt>). * <p> * The internal field corresponding to the type name of this <code>ArrayType</code> instance is also set to * the class name of the array instances it describes. * In other words, the methods <code>getClassName</code> and <code>getTypeName</code> return the same string value. * The internal field corresponding to the description of this <code>ArrayType</code> instance is set to a string value * which follows the following template: * <ul> * <li>if non-primitive array: <tt><i><dimension></i>-dimension array of <i><element_class_name></i></tt></li> * <li>if primitive array: <tt><i><dimension></i>-dimension array of <i><primitive_type_of_the_element_class_name></i></tt></li> * </ul> * <p> * As an example, the following piece of code: * <pre>{@code * ArrayType<String[][][]> t = new ArrayType<String[][][]>(3, SimpleType.STRING); * System.out.println("array class name = " + t.getClassName()); * System.out.println("element class name = " + t.getElementOpenType().getClassName()); * System.out.println("array type name = " + t.getTypeName()); * System.out.println("array type description = " + t.getDescription()); * }</pre> * would produce the following output: * <pre>{@code * array class name = [[[Ljava.lang.String; * element class name = java.lang.String * array type name = [[[Ljava.lang.String; * array type description = 3-dimension array of java.lang.String * }</pre> * And the following piece of code which is equivalent to the one listed * above would also produce the same output: * <pre>{@code * ArrayType<String[]> t1 = new ArrayType<String[]>(1, SimpleType.STRING); * ArrayType<String[][]> t2 = new ArrayType<String[][]>(1, t1); * ArrayType<String[][][]> t3 = new ArrayType<String[][][]>(1, t2); * System.out.println("array class name = " + t3.getClassName()); * System.out.println("element class name = " + t3.getElementOpenType().getClassName()); * System.out.println("array type name = " + t3.getTypeName()); * System.out.println("array type description = " + t3.getDescription()); * }</pre> * * @param dimension the dimension of arrays described by this <tt>ArrayType</tt> instance; * must be greater than or equal to 1. * * @param elementType the <i>open type</i> of element values contained * in the arrays described by this <tt>ArrayType</tt> * instance; must be an instance of either * <tt>SimpleType</tt>, <tt>CompositeType</tt>, * <tt>TabularType</tt> or another <tt>ArrayType</tt> * with a <tt>SimpleType</tt>, <tt>CompositeType</tt> * or <tt>TabularType</tt> as its <tt>elementType</tt>. * * @throws IllegalArgumentException if {@code dimension} is not a positive * integer. * @throws OpenDataException if <var>elementType's className</var> is not * one of the allowed Java class names for open * data. */ public ArrayType(int dimension, OpenType<?> elementType) throws OpenDataException { // Check and construct state defined by parent. // We can't use the package-private OpenType constructor because // we don't know if the elementType parameter is sane. super(buildArrayClassName(dimension, elementType), buildArrayClassName(dimension, elementType), buildArrayDescription(dimension, elementType)); // Check and construct state specific to ArrayType // if (elementType.isArray()) { ArrayType<?> at = (ArrayType<?>) elementType; this.dimension = at.getDimension() + dimension; this.elementType = at.getElementOpenType(); this.primitiveArray = at.isPrimitiveArray(); } else { this.dimension = dimension; this.elementType = elementType; this.primitiveArray = false; } } /** * Constructs a unidimensional {@code ArrayType} instance for the * supplied {@code SimpleType}. * <p> * This constructor supports the creation of arrays of primitive * types when {@code primitiveArray} is {@code true}. * <p> * For primitive arrays the {@link #getElementOpenType()} method * returns the {@link SimpleType} corresponding to the wrapper * type of the primitive type of the array. * <p> * When invoked on an <tt>ArrayType</tt> instance, the {@link OpenType#getClassName() getClassName} method * returns the class name of the array instances it describes (following the rules defined by the * {@link Class#getName() getName} method of <code>java.lang.Class</code>), not the class name of the array elements * (which is returned by a call to <tt>getElementOpenType().getClassName()</tt>). * <p> * The internal field corresponding to the type name of this <code>ArrayType</code> instance is also set to * the class name of the array instances it describes. * In other words, the methods <code>getClassName</code> and <code>getTypeName</code> return the same string value. * The internal field corresponding to the description of this <code>ArrayType</code> instance is set to a string value * which follows the following template: * <ul> * <li>if non-primitive array: <tt>1-dimension array of <i><element_class_name></i></tt></li> * <li>if primitive array: <tt>1-dimension array of <i><primitive_type_of_the_element_class_name></i></tt></li> * </ul> * <p> * As an example, the following piece of code: * <pre>{@code * ArrayType<int[]> t = new ArrayType<int[]>(SimpleType.INTEGER, true); * System.out.println("array class name = " + t.getClassName()); * System.out.println("element class name = " + t.getElementOpenType().getClassName()); * System.out.println("array type name = " + t.getTypeName()); * System.out.println("array type description = " + t.getDescription()); * }</pre> * would produce the following output: * <pre>{@code * array class name = [I * element class name = java.lang.Integer * array type name = [I * array type description = 1-dimension array of int * }</pre> * * @param elementType the {@code SimpleType} of the element values * contained in the arrays described by this * {@code ArrayType} instance. * * @param primitiveArray {@code true} when this array describes * primitive arrays. * * @throws IllegalArgumentException if {@code dimension} is not a positive * integer. * @throws OpenDataException if {@code primitiveArray} is {@code true} and * {@code elementType} is not a valid {@code SimpleType} for a primitive * type. * * @since 1.6 */ public ArrayType(SimpleType<?> elementType, boolean primitiveArray) throws OpenDataException { // Check and construct state defined by parent. // We can call the package-private OpenType constructor because the // set of SimpleTypes is fixed and SimpleType can't be subclassed. super(buildArrayClassName(1, elementType, primitiveArray), buildArrayClassName(1, elementType, primitiveArray), buildArrayDescription(1, elementType, primitiveArray), true); // Check and construct state specific to ArrayType // this.dimension = 1; this.elementType = elementType; this.primitiveArray = primitiveArray; } /* Package-private constructor for callers we trust to get it right. */ ArrayType(String className, String typeName, String description, int dimension, OpenType<?> elementType, boolean primitiveArray) { super(className, typeName, description, true); this.dimension = dimension; this.elementType = elementType; this.primitiveArray = primitiveArray; } private static String buildArrayClassName(int dimension, OpenType<?> elementType) throws OpenDataException { boolean isPrimitiveArray = false; if (elementType.isArray()) { isPrimitiveArray = ((ArrayType<?>) elementType).isPrimitiveArray(); } return buildArrayClassName(dimension, elementType, isPrimitiveArray); } private static String buildArrayClassName(int dimension, OpenType<?> elementType, boolean isPrimitiveArray) throws OpenDataException { if (dimension < 1) { throw new IllegalArgumentException( "Value of argument dimension must be greater than 0"); } StringBuilder result = new StringBuilder(); String elementClassName = elementType.getClassName(); // Add N (= dimension) additional '[' characters to the existing array for (int i = 1; i <= dimension; i++) { result.append('['); } if (elementType.isArray()) { result.append(elementClassName); } else { if (isPrimitiveArray) { final String key = getPrimitiveTypeKey(elementClassName); // Ideally we should throw an IllegalArgumentException here, // but for compatibility reasons we throw an OpenDataException. // (used to be thrown by OpenType() constructor). // if (key == null) throw new OpenDataException("Element type is not primitive: " + elementClassName); result.append(key); } else { result.append("L"); result.append(elementClassName); result.append(';'); } } return result.toString(); } private static String buildArrayDescription(int dimension, OpenType<?> elementType) throws OpenDataException { boolean isPrimitiveArray = false; if (elementType.isArray()) { isPrimitiveArray = ((ArrayType<?>) elementType).isPrimitiveArray(); } return buildArrayDescription(dimension, elementType, isPrimitiveArray); } private static String buildArrayDescription(int dimension, OpenType<?> elementType, boolean isPrimitiveArray) throws OpenDataException { if (elementType.isArray()) { ArrayType<?> at = (ArrayType<?>) elementType; dimension += at.getDimension(); elementType = at.getElementOpenType(); isPrimitiveArray = at.isPrimitiveArray(); } StringBuilder result = new StringBuilder(dimension + "-dimension array of "); final String elementClassName = elementType.getClassName(); if (isPrimitiveArray) { // Convert from wrapper type to primitive type final String primitiveType = getPrimitiveTypeName(elementClassName); // Ideally we should throw an IllegalArgumentException here, // but for compatibility reasons we throw an OpenDataException. // (used to be thrown by OpenType() constructor). // if (primitiveType == null) throw new OpenDataException("Element is not a primitive type: "+ elementClassName); result.append(primitiveType); } else { result.append(elementClassName); } return result.toString(); } /* *** ArrayType specific information methods *** */ /** * Returns the dimension of arrays described by this <tt>ArrayType</tt> instance. * * @return the dimension. */ public int getDimension() { return dimension; } /** * Returns the <i>open type</i> of element values contained in the arrays described by this <tt>ArrayType</tt> instance. * * @return the element type. */ public OpenType<?> getElementOpenType() { return elementType; } /** * Returns <code>true</code> if the open data values this open * type describes are primitive arrays, <code>false</code> otherwise. * * @return true if this is a primitive array type. * * @since 1.6 */ public boolean isPrimitiveArray() { return primitiveArray; } /** * Tests whether <var>obj</var> is a value for this <code>ArrayType</code> * instance. * <p> * This method returns <code>true</code> if and only if <var>obj</var> * is not null, <var>obj</var> is an array and any one of the following * is <tt>true</tt>: * * <ul> * <li>if this <code>ArrayType</code> instance describes an array of * <tt>SimpleType</tt> elements or their corresponding primitive types, * <var>obj</var>'s class name is the same as the className field defined * for this <code>ArrayType</code> instance (i.e. the class name returned * by the {@link OpenType#getClassName() getClassName} method, which * includes the dimension information),<br> </li> * <li>if this <code>ArrayType</code> instance describes an array of * classes implementing the {@code TabularData} interface or the * {@code CompositeData} interface, <var>obj</var> is assignable to * such a declared array, and each element contained in {<var>obj</var> * is either null or a valid value for the element's open type specified * by this <code>ArrayType</code> instance.</li> * </ul> * * @param obj the object to be tested. * * @return <code>true</code> if <var>obj</var> is a value for this * <code>ArrayType</code> instance. */ public boolean isValue(Object obj) { // if obj is null, return false // if (obj == null) { return false; } Class<?> objClass = obj.getClass(); String objClassName = objClass.getName(); // if obj is not an array, return false // if ( ! objClass.isArray() ) { return false; } // Test if obj's class name is the same as for the array values that this instance describes // (this is fine if elements are of simple types, which are final classes) // if ( this.getClassName().equals(objClassName) ) { return true; } // In case this ArrayType instance describes an array of classes implementing the TabularData or CompositeData interface, // we first check for the assignability of obj to such an array of TabularData or CompositeData, // which ensures that: // . obj is of the the same dimension as this ArrayType instance, // . it is declared as an array of elements which are either all TabularData or all CompositeData. // // If the assignment check is positive, // then we have to check that each element in obj is of the same TabularType or CompositeType // as the one described by this ArrayType instance. // // [About assignment check, note that the call below returns true: ] // [Class.forName("[Lpackage.CompositeData;").isAssignableFrom(Class.forName("[Lpackage.CompositeDataImpl;)")); ] // if ( (this.elementType.getClassName().equals(TabularData.class.getName())) || (this.elementType.getClassName().equals(CompositeData.class.getName())) ) { boolean isTabular = (elementType.getClassName().equals(TabularData.class.getName())); int[] dims = new int[getDimension()]; Class<?> elementClass = isTabular ? TabularData.class : CompositeData.class; Class<?> targetClass = Array.newInstance(elementClass, dims).getClass(); // assignment check: return false if negative if ( ! targetClass.isAssignableFrom(objClass) ) { return false; } // check that all elements in obj are valid values for this ArrayType if ( ! checkElementsType( (Object[]) obj, this.dimension) ) { // we know obj's dimension is this.dimension return false; } return true; } // if previous tests did not return, then obj is not a value for this ArrayType instance return false; } /** * Returns true if and only if all elements contained in the array argument x_dim_Array of dimension dim * are valid values (ie either null or of the right openType) * for the element open type specified by this ArrayType instance. * * This method's implementation uses recursion to go down the dimensions of the array argument. */ private boolean checkElementsType(Object[] x_dim_Array, int dim) { // if the elements of x_dim_Array are themselves array: go down recursively.... if ( dim > 1 ) { for (int i=0; i<x_dim_Array.length; i++) { if ( ! checkElementsType((Object[])x_dim_Array[i], dim-1) ) { return false; } } return true; } // ...else, for a non-empty array, each element must be a valid value: either null or of the right openType else { for (int i=0; i<x_dim_Array.length; i++) { if ( (x_dim_Array[i] != null) && (! this.getElementOpenType().isValue(x_dim_Array[i])) ) { return false; } } return true; } } @Override boolean isAssignableFrom(OpenType<?> ot) { if (!(ot instanceof ArrayType<?>)) return false; ArrayType<?> at = (ArrayType<?>) ot; return (at.getDimension() == getDimension() && at.isPrimitiveArray() == isPrimitiveArray() && at.getElementOpenType().isAssignableFrom(getElementOpenType())); } /* *** Methods overriden from class Object *** */ /** * Compares the specified <code>obj</code> parameter with this * <code>ArrayType</code> instance for equality. * <p> * Two <code>ArrayType</code> instances are equal if and only if they * describe array instances which have the same dimension, elements' * open type and primitive array flag. * * @param obj the object to be compared for equality with this * <code>ArrayType</code> instance; if <var>obj</var> * is <code>null</code> or is not an instance of the * class <code>ArrayType</code> this method returns * <code>false</code>. * * @return <code>true</code> if the specified object is equal to * this <code>ArrayType</code> instance. */ public boolean equals(Object obj) { // if obj is null, return false // if (obj == null) { return false; } // if obj is not an ArrayType, return false // if (!(obj instanceof ArrayType<?>)) return false; ArrayType<?> other = (ArrayType<?>) obj; // if other's dimension is different than this instance's, return false // if (this.dimension != other.dimension) { return false; } // Test if other's elementType field is the same as for this instance // if (!this.elementType.equals(other.elementType)) { return false; } // Test if other's primitiveArray flag is the same as for this instance // return this.primitiveArray == other.primitiveArray; } /** * Returns the hash code value for this <code>ArrayType</code> instance. * <p> * The hash code of an <code>ArrayType</code> instance is the sum of the * hash codes of all the elements of information used in <code>equals</code> * comparisons (i.e. dimension, elements' open type and primitive array flag). * The hashcode for a primitive value is the hashcode of the corresponding boxed * object (e.g. the hashcode for <tt>true</tt> is <tt>Boolean.TRUE.hashCode()</tt>). * This ensures that <code> t1.equals(t2) </code> implies that * <code> t1.hashCode()==t2.hashCode() </code> for any two * <code>ArrayType</code> instances <code>t1</code> and <code>t2</code>, * as required by the general contract of the method * {@link Object#hashCode() Object.hashCode()}. * <p> * As <code>ArrayType</code> instances are immutable, the hash * code for this instance is calculated once, on the first call * to <code>hashCode</code>, and then the same value is returned * for subsequent calls. * * @return the hash code value for this <code>ArrayType</code> instance */ public int hashCode() { // Calculate the hash code value if it has not yet been done (ie 1st call to hashCode()) // if (myHashCode == null) { int value = 0; value += dimension; value += elementType.hashCode(); value += Boolean.valueOf(primitiveArray).hashCode(); myHashCode = Integer.valueOf(value); } // return always the same hash code for this instance (immutable) // return myHashCode.intValue(); } /** * Returns a string representation of this <code>ArrayType</code> instance. * <p> * The string representation consists of the name of this class (i.e. * <code>javax.management.openmbean.ArrayType</code>), the type name, * the dimension, the elements' open type and the primitive array flag * defined for this instance. * <p> * As <code>ArrayType</code> instances are immutable, the * string representation for this instance is calculated * once, on the first call to <code>toString</code>, and * then the same value is returned for subsequent calls. * * @return a string representation of this <code>ArrayType</code> instance */ public String toString() { // Calculate the string representation if it has not yet been done (ie 1st call to toString()) // if (myToString == null) { myToString = getClass().getName() + "(name=" + getTypeName() + ",dimension=" + dimension + ",elementType=" + elementType + ",primitiveArray=" + primitiveArray + ")"; } // return always the same string representation for this instance (immutable) // return myToString; } /** * Create an {@code ArrayType} instance in a type-safe manner. * <p> * Multidimensional arrays can be built up by calling this method as many * times as necessary. * <p> * Calling this method twice with the same parameters may return the same * object or two equal but not identical objects. * <p> * As an example, the following piece of code: * <pre>{@code * ArrayType<String[]> t1 = ArrayType.getArrayType(SimpleType.STRING); * ArrayType<String[][]> t2 = ArrayType.getArrayType(t1); * ArrayType<String[][][]> t3 = ArrayType.getArrayType(t2); * System.out.println("array class name = " + t3.getClassName()); * System.out.println("element class name = " + t3.getElementOpenType().getClassName()); * System.out.println("array type name = " + t3.getTypeName()); * System.out.println("array type description = " + t3.getDescription()); * }</pre> * would produce the following output: * <pre>{@code * array class name = [[[Ljava.lang.String; * element class name = java.lang.String * array type name = [[[Ljava.lang.String; * array type description = 3-dimension array of java.lang.String * }</pre> * * @param elementType the <i>open type</i> of element values contained * in the arrays described by this <tt>ArrayType</tt> * instance; must be an instance of either * <tt>SimpleType</tt>, <tt>CompositeType</tt>, * <tt>TabularType</tt> or another <tt>ArrayType</tt> * with a <tt>SimpleType</tt>, <tt>CompositeType</tt> * or <tt>TabularType</tt> as its <tt>elementType</tt>. * * @throws OpenDataException if <var>elementType's className</var> is not * one of the allowed Java class names for open * data. * * @since 1.6 */ public static <E> ArrayType<E[]> getArrayType(OpenType<E> elementType) throws OpenDataException { return new ArrayType<E[]>(1, elementType); } /** * Create an {@code ArrayType} instance in a type-safe manner. * <p> * Calling this method twice with the same parameters may return the * same object or two equal but not identical objects. * <p> * As an example, the following piece of code: * <pre>{@code * ArrayType<int[][][]> t = ArrayType.getPrimitiveArrayType(int[][][].class); * System.out.println("array class name = " + t.getClassName()); * System.out.println("element class name = " + t.getElementOpenType().getClassName()); * System.out.println("array type name = " + t.getTypeName()); * System.out.println("array type description = " + t.getDescription()); * }</pre> * would produce the following output: * <pre>{@code * array class name = [[[I * element class name = java.lang.Integer * array type name = [[[I * array type description = 3-dimension array of int * }</pre> * * @param arrayClass a primitive array class such as {@code int[].class}, * {@code boolean[][].class}, etc. The {@link * #getElementOpenType()} method of the returned * {@code ArrayType} returns the {@link SimpleType} * corresponding to the wrapper type of the primitive * type of the array. * * @throws IllegalArgumentException if <var>arrayClass</var> is not * a primitive array. * * @since 1.6 */ @SuppressWarnings("unchecked") // can't get appropriate T for primitive array public static <T> ArrayType<T> getPrimitiveArrayType(Class<T> arrayClass) { // Check if the supplied parameter is an array // if (!arrayClass.isArray()) { throw new IllegalArgumentException("arrayClass must be an array"); } // Calculate array dimension and component type name // int n = 1; Class<?> componentType = arrayClass.getComponentType(); while (componentType.isArray()) { n++; componentType = componentType.getComponentType(); } String componentTypeName = componentType.getName(); // Check if the array's component type is a primitive type // if (!componentType.isPrimitive()) { throw new IllegalArgumentException( "component type of the array must be a primitive type"); } // Map component type name to corresponding SimpleType // final SimpleType<?> simpleType = getPrimitiveOpenType(componentTypeName); // Build primitive array // try { @SuppressWarnings("rawtypes") ArrayType at = new ArrayType(simpleType, true); if (n > 1) at = new ArrayType<T>(n - 1, at); return at; } catch (OpenDataException e) { throw new IllegalArgumentException(e); // should not happen } } /** * Replace/resolve the object read from the stream before it is returned * to the caller. * * @serialData The new serial form of this class defines a new serializable * {@code boolean} field {@code primitiveArray}. In order to guarantee the * interoperability with previous versions of this class the new serial * form must continue to refer to primitive wrapper types even when the * {@code ArrayType} instance describes a primitive type array. So when * {@code primitiveArray} is {@code true} the {@code className}, * {@code typeName} and {@code description} serializable fields * are converted into primitive types before the deserialized * {@code ArrayType} instance is return to the caller. The * {@code elementType} field always returns the {@code SimpleType} * corresponding to the primitive wrapper type of the array's * primitive type. * <p> * Therefore the following serializable fields are deserialized as follows: * <ul> * <li>if {@code primitiveArray} is {@code true} the {@code className} * field is deserialized by replacing the array's component primitive * wrapper type by the corresponding array's component primitive type, * e.g. {@code "[[Ljava.lang.Integer;"} will be deserialized as * {@code "[[I"}.</li> * <li>if {@code primitiveArray} is {@code true} the {@code typeName} * field is deserialized by replacing the array's component primitive * wrapper type by the corresponding array's component primitive type, * e.g. {@code "[[Ljava.lang.Integer;"} will be deserialized as * {@code "[[I"}.</li> * <li>if {@code primitiveArray} is {@code true} the {@code description} * field is deserialized by replacing the array's component primitive * wrapper type by the corresponding array's component primitive type, * e.g. {@code "2-dimension array of java.lang.Integer"} will be * deserialized as {@code "2-dimension array of int"}.</li> * </ul> * * @since 1.6 */ private Object readResolve() throws ObjectStreamException { if (primitiveArray) { return convertFromWrapperToPrimitiveTypes(); } else { return this; } } private <T> ArrayType<T> convertFromWrapperToPrimitiveTypes() { String cn = getClassName(); String tn = getTypeName(); String d = getDescription(); for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (cn.indexOf((String)typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX]) != -1) { cn = cn.replaceFirst( "L" + typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX] + ";", (String) typeDescr[PRIMITIVE_TYPE_KEY_INDEX]); tn = tn.replaceFirst( "L" + typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX] + ";", (String) typeDescr[PRIMITIVE_TYPE_KEY_INDEX]); d = d.replaceFirst( (String) typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX], (String) typeDescr[PRIMITIVE_TYPE_NAME_INDEX]); break; } } return new ArrayType<T>(cn, tn, d, dimension, elementType, primitiveArray); } /** * Nominate a replacement for this object in the stream before the object * is written. * * @serialData The new serial form of this class defines a new serializable * {@code boolean} field {@code primitiveArray}. In order to guarantee the * interoperability with previous versions of this class the new serial * form must continue to refer to primitive wrapper types even when the * {@code ArrayType} instance describes a primitive type array. So when * {@code primitiveArray} is {@code true} the {@code className}, * {@code typeName} and {@code description} serializable fields * are converted into wrapper types before the serialized * {@code ArrayType} instance is written to the stream. The * {@code elementType} field always returns the {@code SimpleType} * corresponding to the primitive wrapper type of the array's * primitive type. * <p> * Therefore the following serializable fields are serialized as follows: * <ul> * <li>if {@code primitiveArray} is {@code true} the {@code className} * field is serialized by replacing the array's component primitive * type by the corresponding array's component primitive wrapper type, * e.g. {@code "[[I"} will be serialized as * {@code "[[Ljava.lang.Integer;"}.</li> * <li>if {@code primitiveArray} is {@code true} the {@code typeName} * field is serialized by replacing the array's component primitive * type by the corresponding array's component primitive wrapper type, * e.g. {@code "[[I"} will be serialized as * {@code "[[Ljava.lang.Integer;"}.</li> * <li>if {@code primitiveArray} is {@code true} the {@code description} * field is serialized by replacing the array's component primitive * type by the corresponding array's component primitive wrapper type, * e.g. {@code "2-dimension array of int"} will be serialized as * {@code "2-dimension array of java.lang.Integer"}.</li> * </ul> * * @since 1.6 */ private Object writeReplace() throws ObjectStreamException { if (primitiveArray) { return convertFromPrimitiveToWrapperTypes(); } else { return this; } } private <T> ArrayType<T> convertFromPrimitiveToWrapperTypes() { String cn = getClassName(); String tn = getTypeName(); String d = getDescription(); for (Object[] typeDescr : PRIMITIVE_ARRAY_TYPES) { if (cn.indexOf((String) typeDescr[PRIMITIVE_TYPE_KEY_INDEX]) != -1) { cn = cn.replaceFirst( (String) typeDescr[PRIMITIVE_TYPE_KEY_INDEX], "L" + typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX] + ";"); tn = tn.replaceFirst( (String) typeDescr[PRIMITIVE_TYPE_KEY_INDEX], "L" + typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX] + ";"); d = d.replaceFirst( (String) typeDescr[PRIMITIVE_TYPE_NAME_INDEX], (String) typeDescr[PRIMITIVE_WRAPPER_NAME_INDEX]); break; } } return new ArrayType<T>(cn, tn, d, dimension, elementType, primitiveArray); } }
⏎ javax/management/openmbean/ArrayType.java
Or download all of them as a single archive file:
File name: jre-rt-javax-1.8.0_191-src.zip File size: 5381005 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - org.* Package Source Code
2024-07-16, 273131👍, 7💬
Popular Posts:
How to download and install JDK (Java Development Kit) 5? If you want to write Java applications, yo...
Where to find answers to frequently asked questions on Downloading and Using JDK (Java Development K...
A stream buffer is a stream-based representation of an XML infoset in Java. Stream buffers are desig...
commons-collections4-4.4 -sources.jaris the source JAR file for Apache Commons Collections 4.2, whic...
JDK 11 jdk.charsets.jmod is the JMOD file for JDK 11 Charsets module. JDK 11 Charsets module compile...