Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 17 jdk.incubator.vector.jmod - JDK Incubator Vector
JDK 17 jdk.incubator.vector.jmod is the JMOD file for JDK 17 HTTP Server module.
JDK 17 Incubator Vector module compiled class files are stored in \fyicenter\jdk-17.0.5\jmods\jdk.incubator.vector.jmod.
JDK 17 Incubator Vector module compiled class files are also linked and stored in the \fyicenter\jdk-17.0.5\lib\modules JImage file.
JDK 17 Incubator Vector module source code files are stored in \fyicenter\jdk-17.0.5\lib\src.zip\jdk.incubator.vector.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ jdk/incubator/vector/Byte128Vector.java
/* * Copyright (c) 2017, 2021, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package jdk.incubator.vector; import java.nio.ByteBuffer; import java.util.Arrays; import java.util.Objects; import java.util.function.IntUnaryOperator; import jdk.internal.vm.annotation.ForceInline; import jdk.internal.vm.vector.VectorSupport; import static jdk.internal.vm.vector.VectorSupport.*; import static jdk.incubator.vector.VectorOperators.*; // -- This file was mechanically generated: Do not edit! -- // @SuppressWarnings("cast") // warning: redundant cast final class Byte128Vector extends ByteVector { static final ByteSpecies VSPECIES = (ByteSpecies) ByteVector.SPECIES_128; static final VectorShape VSHAPE = VSPECIES.vectorShape(); static final Class<Byte128Vector> VCLASS = Byte128Vector.class; static final int VSIZE = VSPECIES.vectorBitSize(); static final int VLENGTH = VSPECIES.laneCount(); // used by the JVM static final Class<Byte> ETYPE = byte.class; // used by the JVM Byte128Vector(byte[] v) { super(v); } // For compatibility as Byte128Vector::new, // stored into species.vectorFactory. Byte128Vector(Object v) { this((byte[]) v); } static final Byte128Vector ZERO = new Byte128Vector(new byte[VLENGTH]); static final Byte128Vector IOTA = new Byte128Vector(VSPECIES.iotaArray()); static { // Warm up a few species caches. // If we do this too much we will // get NPEs from bootstrap circularity. VSPECIES.dummyVector(); VSPECIES.withLanes(LaneType.BYTE); } // Specialized extractors @ForceInline final @Override public ByteSpecies vspecies() { // ISSUE: This should probably be a @Stable // field inside AbstractVector, rather than // a megamorphic method. return VSPECIES; } @ForceInline @Override public final Class<Byte> elementType() { return byte.class; } @ForceInline @Override public final int elementSize() { return Byte.SIZE; } @ForceInline @Override public final VectorShape shape() { return VSHAPE; } @ForceInline @Override public final int length() { return VLENGTH; } @ForceInline @Override public final int bitSize() { return VSIZE; } @ForceInline @Override public final int byteSize() { return VSIZE / Byte.SIZE; } /*package-private*/ @ForceInline final @Override byte[] vec() { return (byte[])getPayload(); } // Virtualized constructors @Override @ForceInline public final Byte128Vector broadcast(byte e) { return (Byte128Vector) super.broadcastTemplate(e); // specialize } @Override @ForceInline public final Byte128Vector broadcast(long e) { return (Byte128Vector) super.broadcastTemplate(e); // specialize } @Override @ForceInline Byte128Mask maskFromArray(boolean[] bits) { return new Byte128Mask(bits); } @Override @ForceInline Byte128Shuffle iotaShuffle() { return Byte128Shuffle.IOTA; } @ForceInline Byte128Shuffle iotaShuffle(int start, int step, boolean wrap) { if (wrap) { return (Byte128Shuffle)VectorSupport.shuffleIota(ETYPE, Byte128Shuffle.class, VSPECIES, VLENGTH, start, step, 1, (l, lstart, lstep, s) -> s.shuffleFromOp(i -> (VectorIntrinsics.wrapToRange(i*lstep + lstart, l)))); } else { return (Byte128Shuffle)VectorSupport.shuffleIota(ETYPE, Byte128Shuffle.class, VSPECIES, VLENGTH, start, step, 0, (l, lstart, lstep, s) -> s.shuffleFromOp(i -> (i*lstep + lstart))); } } @Override @ForceInline Byte128Shuffle shuffleFromBytes(byte[] reorder) { return new Byte128Shuffle(reorder); } @Override @ForceInline Byte128Shuffle shuffleFromArray(int[] indexes, int i) { return new Byte128Shuffle(indexes, i); } @Override @ForceInline Byte128Shuffle shuffleFromOp(IntUnaryOperator fn) { return new Byte128Shuffle(fn); } // Make a vector of the same species but the given elements: @ForceInline final @Override Byte128Vector vectorFactory(byte[] vec) { return new Byte128Vector(vec); } @ForceInline final @Override Byte128Vector asByteVectorRaw() { return (Byte128Vector) super.asByteVectorRawTemplate(); // specialize } @ForceInline final @Override AbstractVector<?> asVectorRaw(LaneType laneType) { return super.asVectorRawTemplate(laneType); // specialize } // Unary operator @ForceInline final @Override Byte128Vector uOp(FUnOp f) { return (Byte128Vector) super.uOpTemplate(f); // specialize } @ForceInline final @Override Byte128Vector uOp(VectorMask<Byte> m, FUnOp f) { return (Byte128Vector) super.uOpTemplate((Byte128Mask)m, f); // specialize } // Binary operator @ForceInline final @Override Byte128Vector bOp(Vector<Byte> v, FBinOp f) { return (Byte128Vector) super.bOpTemplate((Byte128Vector)v, f); // specialize } @ForceInline final @Override Byte128Vector bOp(Vector<Byte> v, VectorMask<Byte> m, FBinOp f) { return (Byte128Vector) super.bOpTemplate((Byte128Vector)v, (Byte128Mask)m, f); // specialize } // Ternary operator @ForceInline final @Override Byte128Vector tOp(Vector<Byte> v1, Vector<Byte> v2, FTriOp f) { return (Byte128Vector) super.tOpTemplate((Byte128Vector)v1, (Byte128Vector)v2, f); // specialize } @ForceInline final @Override Byte128Vector tOp(Vector<Byte> v1, Vector<Byte> v2, VectorMask<Byte> m, FTriOp f) { return (Byte128Vector) super.tOpTemplate((Byte128Vector)v1, (Byte128Vector)v2, (Byte128Mask)m, f); // specialize } @ForceInline final @Override byte rOp(byte v, FBinOp f) { return super.rOpTemplate(v, f); // specialize } @Override @ForceInline public final <F> Vector<F> convertShape(VectorOperators.Conversion<Byte,F> conv, VectorSpecies<F> rsp, int part) { return super.convertShapeTemplate(conv, rsp, part); // specialize } @Override @ForceInline public final <F> Vector<F> reinterpretShape(VectorSpecies<F> toSpecies, int part) { return super.reinterpretShapeTemplate(toSpecies, part); // specialize } // Specialized algebraic operations: // The following definition forces a specialized version of this // crucial method into the v-table of this class. A call to add() // will inline to a call to lanewise(ADD,), at which point the JIT // intrinsic will have the opcode of ADD, plus all the metadata // for this particular class, enabling it to generate precise // code. // // There is probably no benefit to the JIT to specialize the // masked or broadcast versions of the lanewise method. @Override @ForceInline public Byte128Vector lanewise(Unary op) { return (Byte128Vector) super.lanewiseTemplate(op); // specialize } @Override @ForceInline public Byte128Vector lanewise(Binary op, Vector<Byte> v) { return (Byte128Vector) super.lanewiseTemplate(op, v); // specialize } /*package-private*/ @Override @ForceInline Byte128Vector lanewiseShift(VectorOperators.Binary op, int e) { return (Byte128Vector) super.lanewiseShiftTemplate(op, e); // specialize } /*package-private*/ @Override @ForceInline public final Byte128Vector lanewise(VectorOperators.Ternary op, Vector<Byte> v1, Vector<Byte> v2) { return (Byte128Vector) super.lanewiseTemplate(op, v1, v2); // specialize } @Override @ForceInline public final Byte128Vector addIndex(int scale) { return (Byte128Vector) super.addIndexTemplate(scale); // specialize } // Type specific horizontal reductions @Override @ForceInline public final byte reduceLanes(VectorOperators.Associative op) { return super.reduceLanesTemplate(op); // specialized } @Override @ForceInline public final byte reduceLanes(VectorOperators.Associative op, VectorMask<Byte> m) { return super.reduceLanesTemplate(op, m); // specialized } @Override @ForceInline public final long reduceLanesToLong(VectorOperators.Associative op) { return (long) super.reduceLanesTemplate(op); // specialized } @Override @ForceInline public final long reduceLanesToLong(VectorOperators.Associative op, VectorMask<Byte> m) { return (long) super.reduceLanesTemplate(op, m); // specialized } @ForceInline public VectorShuffle<Byte> toShuffle() { return super.toShuffleTemplate(Byte128Shuffle.class); // specialize } // Specialized unary testing @Override @ForceInline public final Byte128Mask test(Test op) { return super.testTemplate(Byte128Mask.class, op); // specialize } // Specialized comparisons @Override @ForceInline public final Byte128Mask compare(Comparison op, Vector<Byte> v) { return super.compareTemplate(Byte128Mask.class, op, v); // specialize } @Override @ForceInline public final Byte128Mask compare(Comparison op, byte s) { return super.compareTemplate(Byte128Mask.class, op, s); // specialize } @Override @ForceInline public final Byte128Mask compare(Comparison op, long s) { return super.compareTemplate(Byte128Mask.class, op, s); // specialize } @Override @ForceInline public Byte128Vector blend(Vector<Byte> v, VectorMask<Byte> m) { return (Byte128Vector) super.blendTemplate(Byte128Mask.class, (Byte128Vector) v, (Byte128Mask) m); // specialize } @Override @ForceInline public Byte128Vector slice(int origin, Vector<Byte> v) { return (Byte128Vector) super.sliceTemplate(origin, v); // specialize } @Override @ForceInline public Byte128Vector slice(int origin) { return (Byte128Vector) super.sliceTemplate(origin); // specialize } @Override @ForceInline public Byte128Vector unslice(int origin, Vector<Byte> w, int part) { return (Byte128Vector) super.unsliceTemplate(origin, w, part); // specialize } @Override @ForceInline public Byte128Vector unslice(int origin, Vector<Byte> w, int part, VectorMask<Byte> m) { return (Byte128Vector) super.unsliceTemplate(Byte128Mask.class, origin, w, part, (Byte128Mask) m); // specialize } @Override @ForceInline public Byte128Vector unslice(int origin) { return (Byte128Vector) super.unsliceTemplate(origin); // specialize } @Override @ForceInline public Byte128Vector rearrange(VectorShuffle<Byte> s) { return (Byte128Vector) super.rearrangeTemplate(Byte128Shuffle.class, (Byte128Shuffle) s); // specialize } @Override @ForceInline public Byte128Vector rearrange(VectorShuffle<Byte> shuffle, VectorMask<Byte> m) { return (Byte128Vector) super.rearrangeTemplate(Byte128Shuffle.class, (Byte128Shuffle) shuffle, (Byte128Mask) m); // specialize } @Override @ForceInline public Byte128Vector rearrange(VectorShuffle<Byte> s, Vector<Byte> v) { return (Byte128Vector) super.rearrangeTemplate(Byte128Shuffle.class, (Byte128Shuffle) s, (Byte128Vector) v); // specialize } @Override @ForceInline public Byte128Vector selectFrom(Vector<Byte> v) { return (Byte128Vector) super.selectFromTemplate((Byte128Vector) v); // specialize } @Override @ForceInline public Byte128Vector selectFrom(Vector<Byte> v, VectorMask<Byte> m) { return (Byte128Vector) super.selectFromTemplate((Byte128Vector) v, (Byte128Mask) m); // specialize } @ForceInline @Override public byte lane(int i) { switch(i) { case 0: return laneHelper(0); case 1: return laneHelper(1); case 2: return laneHelper(2); case 3: return laneHelper(3); case 4: return laneHelper(4); case 5: return laneHelper(5); case 6: return laneHelper(6); case 7: return laneHelper(7); case 8: return laneHelper(8); case 9: return laneHelper(9); case 10: return laneHelper(10); case 11: return laneHelper(11); case 12: return laneHelper(12); case 13: return laneHelper(13); case 14: return laneHelper(14); case 15: return laneHelper(15); default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH); } } public byte laneHelper(int i) { return (byte) VectorSupport.extract( VCLASS, ETYPE, VLENGTH, this, i, (vec, ix) -> { byte[] vecarr = vec.vec(); return (long)vecarr[ix]; }); } @ForceInline @Override public Byte128Vector withLane(int i, byte e) { switch (i) { case 0: return withLaneHelper(0, e); case 1: return withLaneHelper(1, e); case 2: return withLaneHelper(2, e); case 3: return withLaneHelper(3, e); case 4: return withLaneHelper(4, e); case 5: return withLaneHelper(5, e); case 6: return withLaneHelper(6, e); case 7: return withLaneHelper(7, e); case 8: return withLaneHelper(8, e); case 9: return withLaneHelper(9, e); case 10: return withLaneHelper(10, e); case 11: return withLaneHelper(11, e); case 12: return withLaneHelper(12, e); case 13: return withLaneHelper(13, e); case 14: return withLaneHelper(14, e); case 15: return withLaneHelper(15, e); default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH); } } public Byte128Vector withLaneHelper(int i, byte e) { return VectorSupport.insert( VCLASS, ETYPE, VLENGTH, this, i, (long)e, (v, ix, bits) -> { byte[] res = v.vec().clone(); res[ix] = (byte)bits; return v.vectorFactory(res); }); } // Mask static final class Byte128Mask extends AbstractMask<Byte> { static final int VLENGTH = VSPECIES.laneCount(); // used by the JVM static final Class<Byte> ETYPE = byte.class; // used by the JVM Byte128Mask(boolean[] bits) { this(bits, 0); } Byte128Mask(boolean[] bits, int offset) { super(prepare(bits, offset)); } Byte128Mask(boolean val) { super(prepare(val)); } private static boolean[] prepare(boolean[] bits, int offset) { boolean[] newBits = new boolean[VSPECIES.laneCount()]; for (int i = 0; i < newBits.length; i++) { newBits[i] = bits[offset + i]; } return newBits; } private static boolean[] prepare(boolean val) { boolean[] bits = new boolean[VSPECIES.laneCount()]; Arrays.fill(bits, val); return bits; } @ForceInline final @Override public ByteSpecies vspecies() { // ISSUE: This should probably be a @Stable // field inside AbstractMask, rather than // a megamorphic method. return VSPECIES; } @ForceInline boolean[] getBits() { return (boolean[])getPayload(); } @Override Byte128Mask uOp(MUnOp f) { boolean[] res = new boolean[vspecies().laneCount()]; boolean[] bits = getBits(); for (int i = 0; i < res.length; i++) { res[i] = f.apply(i, bits[i]); } return new Byte128Mask(res); } @Override Byte128Mask bOp(VectorMask<Byte> m, MBinOp f) { boolean[] res = new boolean[vspecies().laneCount()]; boolean[] bits = getBits(); boolean[] mbits = ((Byte128Mask)m).getBits(); for (int i = 0; i < res.length; i++) { res[i] = f.apply(i, bits[i], mbits[i]); } return new Byte128Mask(res); } @ForceInline @Override public final Byte128Vector toVector() { return (Byte128Vector) super.toVectorTemplate(); // specialize } /** * Helper function for lane-wise mask conversions. * This function kicks in after intrinsic failure. */ @ForceInline private final <E> VectorMask<E> defaultMaskCast(AbstractSpecies<E> dsp) { if (length() != dsp.laneCount()) throw new IllegalArgumentException("VectorMask length and species length differ"); boolean[] maskArray = toArray(); return dsp.maskFactory(maskArray).check(dsp); } @Override @ForceInline public <E> VectorMask<E> cast(VectorSpecies<E> dsp) { AbstractSpecies<E> species = (AbstractSpecies<E>) dsp; if (length() != species.laneCount()) throw new IllegalArgumentException("VectorMask length and species length differ"); if (VSIZE == species.vectorBitSize()) { Class<?> dtype = species.elementType(); Class<?> dmtype = species.maskType(); return VectorSupport.convert(VectorSupport.VECTOR_OP_REINTERPRET, this.getClass(), ETYPE, VLENGTH, dmtype, dtype, VLENGTH, this, species, Byte128Mask::defaultMaskCast); } return this.defaultMaskCast(species); } @Override @ForceInline public Byte128Mask eq(VectorMask<Byte> mask) { Objects.requireNonNull(mask); Byte128Mask m = (Byte128Mask)mask; return xor(m.not()); } // Unary operations @Override @ForceInline public Byte128Mask not() { return xor(maskAll(true)); } // Binary operations @Override @ForceInline public Byte128Mask and(VectorMask<Byte> mask) { Objects.requireNonNull(mask); Byte128Mask m = (Byte128Mask)mask; return VectorSupport.binaryOp(VECTOR_OP_AND, Byte128Mask.class, byte.class, VLENGTH, this, m, (m1, m2) -> m1.bOp(m2, (i, a, b) -> a & b)); } @Override @ForceInline public Byte128Mask or(VectorMask<Byte> mask) { Objects.requireNonNull(mask); Byte128Mask m = (Byte128Mask)mask; return VectorSupport.binaryOp(VECTOR_OP_OR, Byte128Mask.class, byte.class, VLENGTH, this, m, (m1, m2) -> m1.bOp(m2, (i, a, b) -> a | b)); } @ForceInline /* package-private */ Byte128Mask xor(VectorMask<Byte> mask) { Objects.requireNonNull(mask); Byte128Mask m = (Byte128Mask)mask; return VectorSupport.binaryOp(VECTOR_OP_XOR, Byte128Mask.class, byte.class, VLENGTH, this, m, (m1, m2) -> m1.bOp(m2, (i, a, b) -> a ^ b)); } // Mask Query operations @Override @ForceInline public int trueCount() { return VectorSupport.maskReductionCoerced(VECTOR_OP_MASK_TRUECOUNT, Byte128Mask.class, byte.class, VLENGTH, this, (m) -> trueCountHelper(((Byte128Mask)m).getBits())); } @Override @ForceInline public int firstTrue() { return VectorSupport.maskReductionCoerced(VECTOR_OP_MASK_FIRSTTRUE, Byte128Mask.class, byte.class, VLENGTH, this, (m) -> firstTrueHelper(((Byte128Mask)m).getBits())); } @Override @ForceInline public int lastTrue() { return VectorSupport.maskReductionCoerced(VECTOR_OP_MASK_LASTTRUE, Byte128Mask.class, byte.class, VLENGTH, this, (m) -> lastTrueHelper(((Byte128Mask)m).getBits())); } // Reductions @Override @ForceInline public boolean anyTrue() { return VectorSupport.test(BT_ne, Byte128Mask.class, byte.class, VLENGTH, this, vspecies().maskAll(true), (m, __) -> anyTrueHelper(((Byte128Mask)m).getBits())); } @Override @ForceInline public boolean allTrue() { return VectorSupport.test(BT_overflow, Byte128Mask.class, byte.class, VLENGTH, this, vspecies().maskAll(true), (m, __) -> allTrueHelper(((Byte128Mask)m).getBits())); } @ForceInline /*package-private*/ static Byte128Mask maskAll(boolean bit) { return VectorSupport.broadcastCoerced(Byte128Mask.class, byte.class, VLENGTH, (bit ? -1 : 0), null, (v, __) -> (v != 0 ? TRUE_MASK : FALSE_MASK)); } private static final Byte128Mask TRUE_MASK = new Byte128Mask(true); private static final Byte128Mask FALSE_MASK = new Byte128Mask(false); } // Shuffle static final class Byte128Shuffle extends AbstractShuffle<Byte> { static final int VLENGTH = VSPECIES.laneCount(); // used by the JVM static final Class<Byte> ETYPE = byte.class; // used by the JVM Byte128Shuffle(byte[] reorder) { super(VLENGTH, reorder); } public Byte128Shuffle(int[] reorder) { super(VLENGTH, reorder); } public Byte128Shuffle(int[] reorder, int i) { super(VLENGTH, reorder, i); } public Byte128Shuffle(IntUnaryOperator fn) { super(VLENGTH, fn); } @Override public ByteSpecies vspecies() { return VSPECIES; } static { // There must be enough bits in the shuffle lanes to encode // VLENGTH valid indexes and VLENGTH exceptional ones. assert(VLENGTH < Byte.MAX_VALUE); assert(Byte.MIN_VALUE <= -VLENGTH); } static final Byte128Shuffle IOTA = new Byte128Shuffle(IDENTITY); @Override @ForceInline public Byte128Vector toVector() { return VectorSupport.shuffleToVector(VCLASS, ETYPE, Byte128Shuffle.class, this, VLENGTH, (s) -> ((Byte128Vector)(((AbstractShuffle<Byte>)(s)).toVectorTemplate()))); } @Override @ForceInline public <F> VectorShuffle<F> cast(VectorSpecies<F> s) { AbstractSpecies<F> species = (AbstractSpecies<F>) s; if (length() != species.laneCount()) throw new IllegalArgumentException("VectorShuffle length and species length differ"); int[] shuffleArray = toArray(); return s.shuffleFromArray(shuffleArray, 0).check(s); } @ForceInline @Override public Byte128Shuffle rearrange(VectorShuffle<Byte> shuffle) { Byte128Shuffle s = (Byte128Shuffle) shuffle; byte[] reorder1 = reorder(); byte[] reorder2 = s.reorder(); byte[] r = new byte[reorder1.length]; for (int i = 0; i < reorder1.length; i++) { int ssi = reorder2[i]; r[i] = reorder1[ssi]; // throws on exceptional index } return new Byte128Shuffle(r); } } // ================================================ // Specialized low-level memory operations. @ForceInline @Override final ByteVector fromArray0(byte[] a, int offset) { return super.fromArray0Template(a, offset); // specialize } @ForceInline @Override final ByteVector fromBooleanArray0(boolean[] a, int offset) { return super.fromBooleanArray0Template(a, offset); // specialize } @ForceInline @Override final ByteVector fromByteArray0(byte[] a, int offset) { return super.fromByteArray0Template(a, offset); // specialize } @ForceInline @Override final ByteVector fromByteBuffer0(ByteBuffer bb, int offset) { return super.fromByteBuffer0Template(bb, offset); // specialize } @ForceInline @Override final void intoArray0(byte[] a, int offset) { super.intoArray0Template(a, offset); // specialize } @ForceInline @Override final void intoByteArray0(byte[] a, int offset) { super.intoByteArray0Template(a, offset); // specialize } // End of specialized low-level memory operations. // ================================================ }
⏎ jdk/incubator/vector/Byte128Vector.java
Or download all of them as a single archive file:
File name: jdk.incubator.vector-17.0.5-src.zip File size: 350622 bytes Release date: 2022-09-13 Download
⇒ JDK 17 jdk.internal.ed.jmod - Internal Editor Module
2023-10-04, 4043👍, 0💬
Popular Posts:
What Is poi-scratchpad-5.2.3.jar ?poi-scratchpad-5.2.3.jar is one of the JAR files for Apache POI 5....
How to perform XML Schema validation with dom\Writer.java provided in the Apache Xerces package? You...
Java Cryptography Extension 1.6 JAR File Size and Download Location: File name: jce.jar, jce-1.6.jar...
How to download and install JDK (Java Development Kit) 5? If you want to write Java applications, yo...
JDK 11 jdk.charsets.jmod is the JMOD file for JDK 11 Charsets module. JDK 11 Charsets module compile...