Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 11 java.sql.jmod - SQL Module
JDK 11 java.sql.jmod is the JMOD file for JDK 11 SQL (Structured Query Language) module.
JDK 11 SQL module compiled class files are stored in \fyicenter\jdk-11.0.1\jmods\java.sql.jmod.
JDK 11 SQL module compiled class files are also linked and stored in the \fyicenter\jdk-11.0.1\lib\modules JImage file.
JDK 11 SQL module source code files are stored in \fyicenter\jdk-11.0.1\lib\src.zip\java.sql.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ java/sql/SQLData.java
/* * Copyright (c) 1998, 2006, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.sql; /** * The interface used for the custom mapping of an SQL user-defined type (UDT) to * a class in the Java programming language. The class object for a class * implementing the <code>SQLData</code> interface will be entered in the * appropriate <code>Connection</code> object's type map along with the SQL * name of the UDT for which it is a custom mapping. * <P> * Typically, a <code>SQLData</code> implementation * will define a field for each attribute of an SQL structured type or a * single field for an SQL <code>DISTINCT</code> type. When the UDT is * retrieved from a data source with the <code>ResultSet.getObject</code> * method, it will be mapped as an instance of this class. A programmer * can operate on this class instance just as on any other object in the * Java programming language and then store any changes made to it by * calling the <code>PreparedStatement.setObject</code> method, * which will map it back to the SQL type. * <p> * It is expected that the implementation of the class for a custom * mapping will be done by a tool. In a typical implementation, the * programmer would simply supply the name of the SQL UDT, the name of * the class to which it is being mapped, and the names of the fields to * which each of the attributes of the UDT is to be mapped. The tool will use * this information to implement the <code>SQLData.readSQL</code> and * <code>SQLData.writeSQL</code> methods. The <code>readSQL</code> method * calls the appropriate <code>SQLInput</code> methods to read * each attribute from an <code>SQLInput</code> object, and the * <code>writeSQL</code> method calls <code>SQLOutput</code> methods * to write each attribute back to the data source via an * <code>SQLOutput</code> object. * <P> * An application programmer will not normally call <code>SQLData</code> methods * directly, and the <code>SQLInput</code> and <code>SQLOutput</code> methods * are called internally by <code>SQLData</code> methods, not by application code. * * @since 1.2 */ public interface SQLData { /** * Returns the fully-qualified * name of the SQL user-defined type that this object represents. * This method is called by the JDBC driver to get the name of the * UDT instance that is being mapped to this instance of * <code>SQLData</code>. * * @return the type name that was passed to the method <code>readSQL</code> * when this object was constructed and populated * @exception SQLException if there is a database access error * @exception SQLFeatureNotSupportedException if the JDBC driver does not support * this method * @since 1.2 */ String getSQLTypeName() throws SQLException; /** * Populates this object with data read from the database. * The implementation of the method must follow this protocol: * <UL> * <LI>It must read each of the attributes or elements of the SQL * type from the given input stream. This is done * by calling a method of the input stream to read each * item, in the order that they appear in the SQL definition * of the type. * <LI>The method <code>readSQL</code> then * assigns the data to appropriate fields or * elements (of this or other objects). * Specifically, it must call the appropriate <i>reader</i> method * (<code>SQLInput.readString</code>, <code>SQLInput.readBigDecimal</code>, * and so on) method(s) to do the following: * for a distinct type, read its single data element; * for a structured type, read a value for each attribute of the SQL type. * </UL> * The JDBC driver initializes the input stream with a type map * before calling this method, which is used by the appropriate * <code>SQLInput</code> reader method on the stream. * * @param stream the <code>SQLInput</code> object from which to read the data for * the value that is being custom mapped * @param typeName the SQL type name of the value on the data stream * @exception SQLException if there is a database access error * @exception SQLFeatureNotSupportedException if the JDBC driver does not support * this method * @see SQLInput * @since 1.2 */ void readSQL (SQLInput stream, String typeName) throws SQLException; /** * Writes this object to the given SQL data stream, converting it back to * its SQL value in the data source. * The implementation of the method must follow this protocol:<BR> * It must write each of the attributes of the SQL type * to the given output stream. This is done by calling a * method of the output stream to write each item, in the order that * they appear in the SQL definition of the type. * Specifically, it must call the appropriate <code>SQLOutput</code> writer * method(s) (<code>writeInt</code>, <code>writeString</code>, and so on) * to do the following: for a Distinct Type, write its single data element; * for a Structured Type, write a value for each attribute of the SQL type. * * @param stream the <code>SQLOutput</code> object to which to write the data for * the value that was custom mapped * @exception SQLException if there is a database access error * @exception SQLFeatureNotSupportedException if the JDBC driver does not support * this method * @see SQLOutput * @since 1.2 */ void writeSQL (SQLOutput stream) throws SQLException; }
⏎ java/sql/SQLData.java
Or download all of them as a single archive file:
File name: java.sql-11.0.1-src.zip File size: 202257 bytes Release date: 2018-11-04 Download
⇒ JDK 11 java.sql.rowset.jmod - SQL Rowset Module
2020-09-15, 21274👍, 0💬
Popular Posts:
The Apache FontBox library is an open source Java tool to obtain low level information from font fil...
What Is js.jar in Rhino JavaScript 1.7R5? js.jar in Rhino JavaScript 1.7R5 is the JAR file for Rhino...
commons-lang-2.6.jar is the JAR file for Apache Commons Lang 2.6, which provides a host of helper ut...
iText is an ideal library for developers looking to enhance web- and other applications with dynamic...
Apache Commons Lang 3 is the 3rd version of Apache Commons Lang, which provides a host of helper uti...