Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 11 jdk.scripting.nashorn.jmod - Scripting Nashorn Module
JDK 11 jdk.scripting.nashorn.jmod is the JMOD file for JDK 11 Scripting Nashorn module.
JDK 11 Scripting Nashorn module compiled class files are stored in \fyicenter\jdk-11.0.1\jmods\jdk.scripting.nashorn.jmod.
JDK 11 Scripting Nashorn module compiled class files are also linked and stored in the \fyicenter\jdk-11.0.1\lib\modules JImage file.
JDK 11 Scripting Nashorn module source code files are stored in \fyicenter\jdk-11.0.1\lib\src.zip\jdk.scripting.nashorn.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ jdk/nashorn/internal/runtime/doubleconv/FixedDtoa.java
/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ // // // // // // Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package jdk.nashorn.internal.runtime.doubleconv; class FixedDtoa { // Represents a 128bit type. This class should be replaced by a native type on // platforms that support 128bit integers. static class UInt128 { private static final long kMask32 = 0xFFFFFFFFL; // Value == (high_bits_ << 64) + low_bits_ private long high_bits_; private long low_bits_; UInt128(final long high_bits, final long low_bits) { this.high_bits_ = high_bits; this.low_bits_ = low_bits; } void multiply(final int multiplicand) { long accumulator; accumulator = (low_bits_ & kMask32) * multiplicand; long part = accumulator & kMask32; accumulator >>>= 32; accumulator = accumulator + (low_bits_ >>> 32) * multiplicand; low_bits_ = (accumulator << 32) + part; accumulator >>>= 32; accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; part = accumulator & kMask32; accumulator >>>= 32; accumulator = accumulator + (high_bits_ >>> 32) * multiplicand; high_bits_ = (accumulator << 32) + part; assert ((accumulator >>> 32) == 0); } void shift(final int shift_amount) { assert (-64 <= shift_amount && shift_amount <= 64); if (shift_amount == 0) { return; } else if (shift_amount == -64) { high_bits_ = low_bits_; low_bits_ = 0; } else if (shift_amount == 64) { low_bits_ = high_bits_; high_bits_ = 0; } else if (shift_amount <= 0) { high_bits_ <<= -shift_amount; high_bits_ += low_bits_ >>> (64 + shift_amount); low_bits_ <<= -shift_amount; } else { low_bits_ >>>= shift_amount; low_bits_ += high_bits_ << (64 - shift_amount); high_bits_ >>>= shift_amount; } } // Modifies *this to *this MOD (2^power). // Returns *this DIV (2^power). int divModPowerOf2(final int power) { if (power >= 64) { final int result = (int) (high_bits_ >>> (power - 64)); high_bits_ -= (long) (result) << (power - 64); return result; } else { final long part_low = low_bits_ >>> power; final long part_high = high_bits_ << (64 - power); final int result = (int) (part_low + part_high); high_bits_ = 0; low_bits_ -= part_low << power; return result; } } boolean isZero() { return high_bits_ == 0 && low_bits_ == 0; } int bitAt(final int position) { if (position >= 64) { return (int) (high_bits_ >>> (position - 64)) & 1; } else { return (int) (low_bits_ >>> position) & 1; } } }; static final int kDoubleSignificandSize = 53; // Includes the hidden bit. static void fillDigits32FixedLength(int number, final int requested_length, final DtoaBuffer buffer) { for (int i = requested_length - 1; i >= 0; --i) { buffer.chars[buffer.length + i] = (char) ('0' + Integer.remainderUnsigned(number, 10)); number = Integer.divideUnsigned(number, 10); } buffer.length += requested_length; } static void fillDigits32(int number, final DtoaBuffer buffer) { int number_length = 0; // We fill the digits in reverse order and exchange them afterwards. while (number != 0) { final int digit = Integer.remainderUnsigned(number, 10); number = Integer.divideUnsigned(number, 10); buffer.chars[buffer.length + number_length] = (char) ('0' + digit); number_length++; } // Exchange the digits. int i = buffer.length; int j = buffer.length + number_length - 1; while (i < j) { final char tmp = buffer.chars[i]; buffer.chars[i] = buffer.chars[j]; buffer.chars[j] = tmp; i++; j--; } buffer.length += number_length; } static void fillDigits64FixedLength(long number, final DtoaBuffer buffer) { final int kTen7 = 10000000; // For efficiency cut the number into 3 uint32_t parts, and print those. final int part2 = (int) Long.remainderUnsigned(number, kTen7); number = Long.divideUnsigned(number, kTen7); final int part1 = (int) Long.remainderUnsigned(number, kTen7); final int part0 = (int) Long.divideUnsigned(number, kTen7); fillDigits32FixedLength(part0, 3, buffer); fillDigits32FixedLength(part1, 7, buffer); fillDigits32FixedLength(part2, 7, buffer); } static void FillDigits64(long number, final DtoaBuffer buffer) { final int kTen7 = 10000000; // For efficiency cut the number into 3 uint32_t parts, and print those. final int part2 = (int) Long.remainderUnsigned(number, kTen7); number = Long.divideUnsigned(number, kTen7); final int part1 = (int) Long.remainderUnsigned(number, kTen7); final int part0 = (int) Long.divideUnsigned(number, kTen7); if (part0 != 0) { fillDigits32(part0, buffer); fillDigits32FixedLength(part1, 7, buffer); fillDigits32FixedLength(part2, 7, buffer); } else if (part1 != 0) { fillDigits32(part1, buffer); fillDigits32FixedLength(part2, 7, buffer); } else { fillDigits32(part2, buffer); } } static void roundUp(final DtoaBuffer buffer) { // An empty buffer represents 0. if (buffer.length == 0) { buffer.chars[0] = '1'; buffer.decimalPoint = 1; buffer.length = 1; return; } // Round the last digit until we either have a digit that was not '9' or until // we reached the first digit. buffer.chars[buffer.length - 1]++; for (int i = buffer.length - 1; i > 0; --i) { if (buffer.chars[i] != '0' + 10) { return; } buffer.chars[i] = '0'; buffer.chars[i - 1]++; } // If the first digit is now '0' + 10, we would need to set it to '0' and add // a '1' in front. However we reach the first digit only if all following // digits had been '9' before rounding up. Now all trailing digits are '0' and // we simply switch the first digit to '1' and update the decimal-point // (indicating that the point is now one digit to the right). if (buffer.chars[0] == '0' + 10) { buffer.chars[0] = '1'; buffer.decimalPoint++; } } // The given fractionals number represents a fixed-point number with binary // point at bit (-exponent). // Preconditions: // -128 <= exponent <= 0. // 0 <= fractionals * 2^exponent < 1 // The buffer holds the result. // The function will round its result. During the rounding-process digits not // generated by this function might be updated, and the decimal-point variable // might be updated. If this function generates the digits 99 and the buffer // already contained "199" (thus yielding a buffer of "19999") then a // rounding-up will change the contents of the buffer to "20000". static void fillFractionals(long fractionals, final int exponent, final int fractional_count, final DtoaBuffer buffer) { assert (-128 <= exponent && exponent <= 0); // 'fractionals' is a fixed-decimalPoint number, with binary decimalPoint at bit // (-exponent). Inside the function the non-converted remainder of fractionals // is a fixed-decimalPoint number, with binary decimalPoint at bit 'decimalPoint'. if (-exponent <= 64) { // One 64 bit number is sufficient. assert (fractionals >>> 56 == 0); int point = -exponent; for (int i = 0; i < fractional_count; ++i) { if (fractionals == 0) break; // Instead of multiplying by 10 we multiply by 5 and adjust the point // location. This way the fractionals variable will not overflow. // Invariant at the beginning of the loop: fractionals < 2^point. // Initially we have: point <= 64 and fractionals < 2^56 // After each iteration the point is decremented by one. // Note that 5^3 = 125 < 128 = 2^7. // Therefore three iterations of this loop will not overflow fractionals // (even without the subtraction at the end of the loop body). At this // time point will satisfy point <= 61 and therefore fractionals < 2^point // and any further multiplication of fractionals by 5 will not overflow. fractionals *= 5; point--; final int digit = (int) (fractionals >>> point); assert (digit <= 9); buffer.chars[buffer.length] = (char) ('0' + digit); buffer.length++; fractionals -= (long) (digit) << point; } // If the first bit after the point is set we have to round up. if (((fractionals >>> (point - 1)) & 1) == 1) { roundUp(buffer); } } else { // We need 128 bits. assert (64 < -exponent && -exponent <= 128); final UInt128 fractionals128 = new UInt128(fractionals, 0); fractionals128.shift(-exponent - 64); int point = 128; for (int i = 0; i < fractional_count; ++i) { if (fractionals128.isZero()) break; // As before: instead of multiplying by 10 we multiply by 5 and adjust the // point location. // This multiplication will not overflow for the same reasons as before. fractionals128.multiply(5); point--; final int digit = fractionals128.divModPowerOf2(point); assert (digit <= 9); buffer.chars[buffer.length] = (char) ('0' + digit); buffer.length++; } if (fractionals128.bitAt(point - 1) == 1) { roundUp(buffer); } } } // Removes leading and trailing zeros. // If leading zeros are removed then the decimal point position is adjusted. static void trimZeros(final DtoaBuffer buffer) { while (buffer.length > 0 && buffer.chars[buffer.length - 1] == '0') { buffer.length--; } int first_non_zero = 0; while (first_non_zero < buffer.length && buffer.chars[first_non_zero] == '0') { first_non_zero++; } if (first_non_zero != 0) { for (int i = first_non_zero; i < buffer.length; ++i) { buffer.chars[i - first_non_zero] = buffer.chars[i]; } buffer.length -= first_non_zero; buffer.decimalPoint -= first_non_zero; } } static boolean fastFixedDtoa(final double v, final int fractional_count, final DtoaBuffer buffer) { final long kMaxUInt32 = 0xFFFFFFFFL; final long l = IeeeDouble.doubleToLong(v); long significand = IeeeDouble.significand(l); final int exponent = IeeeDouble.exponent(l); // v = significand * 2^exponent (with significand a 53bit integer). // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we // don't know how to compute the representation. 2^73 ~= 9.5*10^21. // If necessary this limit could probably be increased, but we don't need // more. if (exponent > 20) return false; if (fractional_count > 20) return false; // At most kDoubleSignificandSize bits of the significand are non-zero. // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero // bits: 0..11*..0xxx..53*..xx if (exponent + kDoubleSignificandSize > 64) { // The exponent must be > 11. // // We know that v = significand * 2^exponent. // And the exponent > 11. // We simplify the task by dividing v by 10^17. // The quotient delivers the first digits, and the remainder fits into a 64 // bit number. // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. final long kFive17 = 0xB1A2BC2EC5L; // 5^17 long divisor = kFive17; final int divisor_power = 17; long dividend = significand; final int quotient; final long remainder; // Let v = f * 2^e with f == significand and e == exponent. // Then need q (quotient) and r (remainder) as follows: // v = q * 10^17 + r // f * 2^e = q * 10^17 + r // f * 2^e = q * 5^17 * 2^17 + r // If e > 17 then // f * 2^(e-17) = q * 5^17 + r/2^17 // else // f = q * 5^17 * 2^(17-e) + r/2^e if (exponent > divisor_power) { // We only allow exponents of up to 20 and therefore (17 - e) <= 3 dividend <<= exponent - divisor_power; quotient = (int) Long.divideUnsigned(dividend, divisor); remainder = Long.remainderUnsigned(dividend, divisor) << divisor_power; } else { divisor <<= divisor_power - exponent; quotient = (int) Long.divideUnsigned(dividend, divisor); remainder = Long.remainderUnsigned(dividend, divisor) << exponent; } fillDigits32(quotient, buffer); fillDigits64FixedLength(remainder, buffer); buffer.decimalPoint = buffer.length; } else if (exponent >= 0) { // 0 <= exponent <= 11 significand <<= exponent; FillDigits64(significand, buffer); buffer.decimalPoint = buffer.length; } else if (exponent > -kDoubleSignificandSize) { // We have to cut the number. final long integrals = significand >>> -exponent; final long fractionals = significand - (integrals << -exponent); if (Long.compareUnsigned(integrals, kMaxUInt32) > 0) { FillDigits64(integrals, buffer); } else { fillDigits32((int) (integrals), buffer); } buffer.decimalPoint = buffer.length; fillFractionals(fractionals, exponent, fractional_count, buffer); } else if (exponent < -128) { // This configuration (with at most 20 digits) means that all digits must be // 0. assert (fractional_count <= 20); buffer.reset(); buffer.decimalPoint = -fractional_count; } else { buffer.decimalPoint = 0; fillFractionals(significand, exponent, fractional_count, buffer); } trimZeros(buffer); if (buffer.length == 0) { // The string is empty and the decimal_point thus has no importance. Mimick // Gay's dtoa and and set it to -fractional_count. buffer.decimalPoint = -fractional_count; } return true; } }
⏎ jdk/nashorn/internal/runtime/doubleconv/FixedDtoa.java
Or download all of them as a single archive file:
File name: jdk.scripting.nashorn-11.0.1-src.zip File size: 1390965 bytes Release date: 2018-11-04 Download
⇒ JDK 11 jdk.scripting.nashorn.shell.jmod - Scripting Nashorn Shell Module
2020-04-25, 82850👍, 0💬
Popular Posts:
JDK 11 java.desktop.jmod is the JMOD file for JDK 11 Desktop module. JDK 11 Desktop module compiled ...
What Is javaws.jar in JRE (Java Runtime Environment) 8? javaws.jar in JRE (Java Runtime Environment)...
How to download and install Apache ZooKeeper Source Package? Apache ZooKeeper is an open-source serv...
How to download and install Apache XMLBeans Source Package? The source package contains Java source ...
What JAR files are required to run sax\Writer.java provided in the Apache Xerces package? 1 JAR file...