Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries. JRE (Java Runtime) 8 is the runtime environment included in JDK 8. JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/AlphaComposite.java
/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt; import java.awt.image.ColorModel; import java.lang.annotation.Native; import sun.java2d.SunCompositeContext; /** * The <code>AlphaComposite</code> class implements basic alpha * compositing rules for combining source and destination colors * to achieve blending and transparency effects with graphics and * images. * The specific rules implemented by this class are the basic set * of 12 rules described in * T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84, * 253-259. * The rest of this documentation assumes some familiarity with the * definitions and concepts outlined in that paper. * * <p> * This class extends the standard equations defined by Porter and * Duff to include one additional factor. * An instance of the <code>AlphaComposite</code> class can contain * an alpha value that is used to modify the opacity or coverage of * every source pixel before it is used in the blending equations. * * <p> * It is important to note that the equations defined by the Porter * and Duff paper are all defined to operate on color components * that are premultiplied by their corresponding alpha components. * Since the <code>ColorModel</code> and <code>Raster</code> classes * allow the storage of pixel data in either premultiplied or * non-premultiplied form, all input data must be normalized into * premultiplied form before applying the equations and all results * might need to be adjusted back to the form required by the destination * before the pixel values are stored. * * <p> * Also note that this class defines only the equations * for combining color and alpha values in a purely mathematical * sense. The accurate application of its equations depends * on the way the data is retrieved from its sources and stored * in its destinations. * See <a href="#caveats">Implementation Caveats</a> * for further information. * * <p> * The following factors are used in the description of the blending * equation in the Porter and Duff paper: * * <blockquote> * <table summary="layout"> * <tr><th align=left>Factor <th align=left>Definition * <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel * <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form * <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel * <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form * <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output * <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes * to the output * <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result * <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form * </table> * </blockquote> * * <p> * Using these factors, Porter and Duff define 12 ways of choosing * the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to * produce each of 12 desirable visual effects. * The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> * are given in the descriptions of the 12 static fields * that specify visual effects. * For example, * the description for * <a href="#SRC_OVER"><code>SRC_OVER</code></a> * specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>). * Once a set of equations for determining the blending factors is * known they can then be applied to each pixel to produce a result * using the following set of equations: * * <pre> * <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>) * <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>) * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre> * * <p> * The following factors will be used to discuss our extensions to * the blending equation in the Porter and Duff paper: * * <blockquote> * <table summary="layout"> * <tr><th align=left>Factor <th align=left>Definition * <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel * <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel * <tr><td><em>A<sub>ac</sub></em> <td>the "extra" alpha component from the AlphaComposite instance * <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel * <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel * <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination * <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination * </table> *</blockquote> * * <h3>Preparing Inputs</h3> * * <p> * The <code>AlphaComposite</code> class defines an additional alpha * value that is applied to the source alpha. * This value is applied as if an implicit SRC_IN rule were first * applied to the source pixel against a pixel with the indicated * alpha by multiplying both the raw source alpha and the raw * source colors by the alpha in the <code>AlphaComposite</code>. * This leads to the following equation for producing the alpha * used in the Porter and Duff blending equation: * * <pre> * <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre> * * All of the raw source color components need to be multiplied * by the alpha in the <code>AlphaComposite</code> instance. * Additionally, if the source was not in premultiplied form * then the color components also need to be multiplied by the * source alpha. * Thus, the equation for producing the source color components * for the Porter and Duff equation depends on whether the source * pixels are premultiplied or not: * * <pre> * <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is not premultiplied) * <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is premultiplied) </pre> * * No adjustment needs to be made to the destination alpha: * * <pre> * <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre> * * <p> * The destination color components need to be adjusted only if * they are not in premultiplied form: * * <pre> * <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em> (if destination is not premultiplied) * <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> (if destination is premultiplied) </pre> * * <h3>Applying the Blending Equation</h3> * * <p> * The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>, * <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard * Porter and Duff equations to calculate the blending factors * <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting * premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>. * * <h3>Preparing Results</h3> * * <p> * The results only need to be adjusted if they are to be stored * back into a destination buffer that holds data that is not * premultiplied, using the following equations: * * <pre> * <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em> * <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> (if dest is premultiplied) * <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em> (if dest is not premultiplied) </pre> * * Note that since the division is undefined if the resulting alpha * is zero, the division in that case is omitted to avoid the "divide * by zero" and the color components are left as * all zeros. * * <h3>Performance Considerations</h3> * * <p> * For performance reasons, it is preferable that * <code>Raster</code> objects passed to the <code>compose</code> * method of a {@link CompositeContext} object created by the * <code>AlphaComposite</code> class have premultiplied data. * If either the source <code>Raster</code> * or the destination <code>Raster</code> * is not premultiplied, however, * appropriate conversions are performed before and after the compositing * operation. * * <h3><a name="caveats">Implementation Caveats</a></h3> * * <ul> * <li> * Many sources, such as some of the opaque image types listed * in the <code>BufferedImage</code> class, do not store alpha values * for their pixels. Such sources supply an alpha of 1.0 for * all of their pixels. * * <li> * Many destinations also have no place to store the alpha values * that result from the blending calculations performed by this class. * Such destinations thus implicitly discard the resulting * alpha values that this class produces. * It is recommended that such destinations should treat their stored * color values as non-premultiplied and divide the resulting color * values by the resulting alpha value before storing the color * values and discarding the alpha value. * * <li> * The accuracy of the results depends on the manner in which pixels * are stored in the destination. * An image format that provides at least 8 bits of storage per color * and alpha component is at least adequate for use as a destination * for a sequence of a few to a dozen compositing operations. * An image format with fewer than 8 bits of storage per component * is of limited use for just one or two compositing operations * before the rounding errors dominate the results. * An image format * that does not separately store * color components is not a * good candidate for any type of translucent blending. * For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code> * should not be used as a destination for a blending operation * because every operation * can introduce large errors, due to * the need to choose a pixel from a limited palette to match the * results of the blending equations. * * <li> * Nearly all formats store pixels as discrete integers rather than * the floating point values used in the reference equations above. * The implementation can either scale the integer pixel * values into floating point values in the range 0.0 to 1.0 or * use slightly modified versions of the equations * that operate entirely in the integer domain and yet produce * analogous results to the reference equations. * * <p> * Typically the integer values are related to the floating point * values in such a way that the integer 0 is equated * to the floating point value 0.0 and the integer * 2^<em>n</em>-1 (where <em>n</em> is the number of bits * in the representation) is equated to 1.0. * For 8-bit representations, this means that 0x00 * represents 0.0 and 0xff represents * 1.0. * * <li> * The internal implementation can approximate some of the equations * and it can also eliminate some steps to avoid unnecessary operations. * For example, consider a discrete integer image with non-premultiplied * alpha values that uses 8 bits per component for storage. * The stored values for a * nearly transparent darkened red might be: * * <pre> * (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre> * * <p> * If integer math were being used and this value were being * composited in * <a href="#SRC"><code>SRC</code></a> * mode with no extra alpha, then the math would * indicate that the results were (in integer format): * * <pre> * (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre> * * <p> * Note that the intermediate values, which are always in premultiplied * form, would only allow the integer red component to be either 0x00 * or 0x01. When we try to store this result back into a destination * that is not premultiplied, dividing out the alpha will give us * very few choices for the non-premultiplied red value. * In this case an implementation that performs the math in integer * space without shortcuts is likely to end up with the final pixel * values of: * * <pre> * (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre> * * <p> * (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent * to the value 0xff in an 8-bit storage format.) * * <p> * Alternately, an implementation that uses floating point math * might produce more accurate results and end up returning to the * original pixel value with little, if any, roundoff error. * Or, an implementation using integer math might decide that since * the equations boil down to a virtual NOP on the color values * if performed in a floating point space, it can transfer the * pixel untouched to the destination and avoid all the math entirely. * * <p> * These implementations all attempt to honor the * same equations, but use different tradeoffs of integer and * floating point math and reduced or full equations. * To account for such differences, it is probably best to * expect only that the premultiplied form of the results to * match between implementations and image formats. In this * case both answers, expressed in premultiplied form would * equate to: * * <pre> * (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre> * * <p> * and thus they would all match. * * <li> * Because of the technique of simplifying the equations for * calculation efficiency, some implementations might perform * differently when encountering result alpha values of 0.0 * on a non-premultiplied destination. * Note that the simplification of removing the divide by alpha * in the case of the SRC rule is technically not valid if the * denominator (alpha) is 0. * But, since the results should only be expected to be accurate * when viewed in premultiplied form, a resulting alpha of 0 * essentially renders the resulting color components irrelevant * and so exact behavior in this case should not be expected. * </ul> * @see Composite * @see CompositeContext */ public final class AlphaComposite implements Composite { /** * Both the color and the alpha of the destination are cleared * (Porter-Duff Clear rule). * Neither the source nor the destination is used as input. *<p> * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus: *<pre> * <em>A<sub>r</sub></em> = 0 * <em>C<sub>r</sub></em> = 0 *</pre> */ @Native public static final int CLEAR = 1; /** * The source is copied to the destination * (Porter-Duff Source rule). * The destination is not used as input. *<p> * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> *</pre> */ @Native public static final int SRC = 2; /** * The destination is left untouched * (Porter-Duff Destination rule). *<p> * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em> *</pre> * @since 1.4 */ @Native public static final int DST = 9; // Note that DST was added in 1.4 so it is numbered out of order... /** * The source is composited over the destination * (Porter-Duff Source Over Destination rule). *<p> * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) *</pre> */ @Native public static final int SRC_OVER = 3; /** * The destination is composited over the source and * the result replaces the destination * (Porter-Duff Destination Over Source rule). *<p> * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em> *</pre> */ @Native public static final int DST_OVER = 4; /** * The part of the source lying inside of the destination replaces * the destination * (Porter-Duff Source In Destination rule). *<p> * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> *</pre> */ @Native public static final int SRC_IN = 5; /** * The part of the destination lying inside of the source * replaces the destination * (Porter-Duff Destination In Source rule). *<p> * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em> *</pre> */ @Native public static final int DST_IN = 6; /** * The part of the source lying outside of the destination * replaces the destination * (Porter-Duff Source Held Out By Destination rule). *<p> * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) *</pre> */ @Native public static final int SRC_OUT = 7; /** * The part of the destination lying outside of the source * replaces the destination * (Porter-Duff Destination Held Out By Source rule). *<p> * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) * <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) *</pre> */ @Native public static final int DST_OUT = 8; // Rule 9 is DST which is defined above where it fits into the // list logically, rather than numerically // // public static final int DST = 9; /** * The part of the source lying inside of the destination * is composited onto the destination * (Porter-Duff Source Atop Destination rule). *<p> * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) *</pre> * @since 1.4 */ @Native public static final int SRC_ATOP = 10; /** * The part of the destination lying inside of the source * is composited over the source and replaces the destination * (Porter-Duff Destination Atop Source rule). *<p> * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em> * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em> *</pre> * @since 1.4 */ @Native public static final int DST_ATOP = 11; /** * The part of the source that lies outside of the destination * is combined with the part of the destination that lies outside * of the source * (Porter-Duff Source Xor Destination rule). *<p> * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus: *<pre> * <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) * <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) *</pre> * @since 1.4 */ @Native public static final int XOR = 12; /** * <code>AlphaComposite</code> object that implements the opaque CLEAR rule * with an alpha of 1.0f. * @see #CLEAR */ public static final AlphaComposite Clear = new AlphaComposite(CLEAR); /** * <code>AlphaComposite</code> object that implements the opaque SRC rule * with an alpha of 1.0f. * @see #SRC */ public static final AlphaComposite Src = new AlphaComposite(SRC); /** * <code>AlphaComposite</code> object that implements the opaque DST rule * with an alpha of 1.0f. * @see #DST * @since 1.4 */ public static final AlphaComposite Dst = new AlphaComposite(DST); /** * <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule * with an alpha of 1.0f. * @see #SRC_OVER */ public static final AlphaComposite SrcOver = new AlphaComposite(SRC_OVER); /** * <code>AlphaComposite</code> object that implements the opaque DST_OVER rule * with an alpha of 1.0f. * @see #DST_OVER */ public static final AlphaComposite DstOver = new AlphaComposite(DST_OVER); /** * <code>AlphaComposite</code> object that implements the opaque SRC_IN rule * with an alpha of 1.0f. * @see #SRC_IN */ public static final AlphaComposite SrcIn = new AlphaComposite(SRC_IN); /** * <code>AlphaComposite</code> object that implements the opaque DST_IN rule * with an alpha of 1.0f. * @see #DST_IN */ public static final AlphaComposite DstIn = new AlphaComposite(DST_IN); /** * <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule * with an alpha of 1.0f. * @see #SRC_OUT */ public static final AlphaComposite SrcOut = new AlphaComposite(SRC_OUT); /** * <code>AlphaComposite</code> object that implements the opaque DST_OUT rule * with an alpha of 1.0f. * @see #DST_OUT */ public static final AlphaComposite DstOut = new AlphaComposite(DST_OUT); /** * <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule * with an alpha of 1.0f. * @see #SRC_ATOP * @since 1.4 */ public static final AlphaComposite SrcAtop = new AlphaComposite(SRC_ATOP); /** * <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule * with an alpha of 1.0f. * @see #DST_ATOP * @since 1.4 */ public static final AlphaComposite DstAtop = new AlphaComposite(DST_ATOP); /** * <code>AlphaComposite</code> object that implements the opaque XOR rule * with an alpha of 1.0f. * @see #XOR * @since 1.4 */ public static final AlphaComposite Xor = new AlphaComposite(XOR); @Native private static final int MIN_RULE = CLEAR; @Native private static final int MAX_RULE = XOR; float extraAlpha; int rule; private AlphaComposite(int rule) { this(rule, 1.0f); } private AlphaComposite(int rule, float alpha) { if (rule < MIN_RULE || rule > MAX_RULE) { throw new IllegalArgumentException("unknown composite rule"); } if (alpha >= 0.0f && alpha <= 1.0f) { this.rule = rule; this.extraAlpha = alpha; } else { throw new IllegalArgumentException("alpha value out of range"); } } /** * Creates an <code>AlphaComposite</code> object with the specified rule. * @param rule the compositing rule * @throws IllegalArgumentException if <code>rule</code> is not one of * the following: {@link #CLEAR}, {@link #SRC}, {@link #DST}, * {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, * {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT}, * {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR} */ public static AlphaComposite getInstance(int rule) { switch (rule) { case CLEAR: return Clear; case SRC: return Src; case DST: return Dst; case SRC_OVER: return SrcOver; case DST_OVER: return DstOver; case SRC_IN: return SrcIn; case DST_IN: return DstIn; case SRC_OUT: return SrcOut; case DST_OUT: return DstOut; case SRC_ATOP: return SrcAtop; case DST_ATOP: return DstAtop; case XOR: return Xor; default: throw new IllegalArgumentException("unknown composite rule"); } } /** * Creates an <code>AlphaComposite</code> object with the specified rule and * the constant alpha to multiply with the alpha of the source. * The source is multiplied with the specified alpha before being composited * with the destination. * @param rule the compositing rule * @param alpha the constant alpha to be multiplied with the alpha of * the source. <code>alpha</code> must be a floating point number in the * inclusive range [0.0, 1.0]. * @throws IllegalArgumentException if * <code>alpha</code> is less than 0.0 or greater than 1.0, or if * <code>rule</code> is not one of * the following: {@link #CLEAR}, {@link #SRC}, {@link #DST}, * {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, * {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT}, * {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR} */ public static AlphaComposite getInstance(int rule, float alpha) { if (alpha == 1.0f) { return getInstance(rule); } return new AlphaComposite(rule, alpha); } /** * Creates a context for the compositing operation. * The context contains state that is used in performing * the compositing operation. * @param srcColorModel the {@link ColorModel} of the source * @param dstColorModel the <code>ColorModel</code> of the destination * @return the <code>CompositeContext</code> object to be used to perform * compositing operations. */ public CompositeContext createContext(ColorModel srcColorModel, ColorModel dstColorModel, RenderingHints hints) { return new SunCompositeContext(this, srcColorModel, dstColorModel); } /** * Returns the alpha value of this <code>AlphaComposite</code>. If this * <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned. * @return the alpha value of this <code>AlphaComposite</code>. */ public float getAlpha() { return extraAlpha; } /** * Returns the compositing rule of this <code>AlphaComposite</code>. * @return the compositing rule of this <code>AlphaComposite</code>. */ public int getRule() { return rule; } /** * Returns a similar <code>AlphaComposite</code> object that uses * the specified compositing rule. * If this object already uses the specified compositing rule, * this object is returned. * @return an <code>AlphaComposite</code> object derived from * this object that uses the specified compositing rule. * @param rule the compositing rule * @throws IllegalArgumentException if * <code>rule</code> is not one of * the following: {@link #CLEAR}, {@link #SRC}, {@link #DST}, * {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN}, * {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT}, * {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR} * @since 1.6 */ public AlphaComposite derive(int rule) { return (this.rule == rule) ? this : getInstance(rule, this.extraAlpha); } /** * Returns a similar <code>AlphaComposite</code> object that uses * the specified alpha value. * If this object already has the specified alpha value, * this object is returned. * @return an <code>AlphaComposite</code> object derived from * this object that uses the specified alpha value. * @param alpha the constant alpha to be multiplied with the alpha of * the source. <code>alpha</code> must be a floating point number in the * inclusive range [0.0, 1.0]. * @throws IllegalArgumentException if * <code>alpha</code> is less than 0.0 or greater than 1.0 * @since 1.6 */ public AlphaComposite derive(float alpha) { return (this.extraAlpha == alpha) ? this : getInstance(this.rule, alpha); } /** * Returns the hashcode for this composite. * @return a hash code for this composite. */ public int hashCode() { return (Float.floatToIntBits(extraAlpha) * 31 + rule); } /** * Determines whether the specified object is equal to this * <code>AlphaComposite</code>. * <p> * The result is <code>true</code> if and only if * the argument is not <code>null</code> and is an * <code>AlphaComposite</code> object that has the same * compositing rule and alpha value as this object. * * @param obj the <code>Object</code> to test for equality * @return <code>true</code> if <code>obj</code> equals this * <code>AlphaComposite</code>; <code>false</code> otherwise. */ public boolean equals(Object obj) { if (!(obj instanceof AlphaComposite)) { return false; } AlphaComposite ac = (AlphaComposite) obj; if (rule != ac.rule) { return false; } if (extraAlpha != ac.extraAlpha) { return false; } return true; } }
⏎ java/awt/AlphaComposite.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2023-08-23, 290150👍, 4💬
Popular Posts:
Where Can I see Java Source Code files for Xerces Java 2.11.2? Here are Java Source Code files for X...
itextpdf.jar is a component in iText 5 Java library to provide core functionalities. iText Java libr...
jlGui is a music player for the Java platform. It is based on Java Sound 1.0 (i.e. JDK 1.3+). It sup...
Apache Log4j provides the interface that applications should code to and provides the adapter compon...
Rhino JavaScript Java Library is an open-source implementation of JavaScript written entirely in Jav...