Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries. JRE (Java Runtime) 8 is the runtime environment included in JDK 8. JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/geom/AffineTransform.java
/* * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt.geom; import java.awt.Shape; import java.beans.ConstructorProperties; /** * The <code>AffineTransform</code> class represents a 2D affine transform * that performs a linear mapping from 2D coordinates to other 2D * coordinates that preserves the "straightness" and * "parallelness" of lines. Affine transformations can be constructed * using sequences of translations, scales, flips, rotations, and shears. * <p> * Such a coordinate transformation can be represented by a 3 row by * 3 column matrix with an implied last row of [ 0 0 1 ]. This matrix * transforms source coordinates {@code (x,y)} into * destination coordinates {@code (x',y')} by considering * them to be a column vector and multiplying the coordinate vector * by the matrix according to the following process: * <pre> * [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ] * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ] * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ] * </pre> * <h3><a name="quadrantapproximation">Handling 90-Degree Rotations</a></h3> * <p> * In some variations of the <code>rotate</code> methods in the * <code>AffineTransform</code> class, a double-precision argument * specifies the angle of rotation in radians. * These methods have special handling for rotations of approximately * 90 degrees (including multiples such as 180, 270, and 360 degrees), * so that the common case of quadrant rotation is handled more * efficiently. * This special handling can cause angles very close to multiples of * 90 degrees to be treated as if they were exact multiples of * 90 degrees. * For small multiples of 90 degrees the range of angles treated * as a quadrant rotation is approximately 0.00000121 degrees wide. * This section explains why such special care is needed and how * it is implemented. * <p> * Since 90 degrees is represented as <code>PI/2</code> in radians, * and since PI is a transcendental (and therefore irrational) number, * it is not possible to exactly represent a multiple of 90 degrees as * an exact double precision value measured in radians. * As a result it is theoretically impossible to describe quadrant * rotations (90, 180, 270 or 360 degrees) using these values. * Double precision floating point values can get very close to * non-zero multiples of <code>PI/2</code> but never close enough * for the sine or cosine to be exactly 0.0, 1.0 or -1.0. * The implementations of <code>Math.sin()</code> and * <code>Math.cos()</code> correspondingly never return 0.0 * for any case other than <code>Math.sin(0.0)</code>. * These same implementations do, however, return exactly 1.0 and * -1.0 for some range of numbers around each multiple of 90 * degrees since the correct answer is so close to 1.0 or -1.0 that * the double precision significand cannot represent the difference * as accurately as it can for numbers that are near 0.0. * <p> * The net result of these issues is that if the * <code>Math.sin()</code> and <code>Math.cos()</code> methods * are used to directly generate the values for the matrix modifications * during these radian-based rotation operations then the resulting * transform is never strictly classifiable as a quadrant rotation * even for a simple case like <code>rotate(Math.PI/2.0)</code>, * due to minor variations in the matrix caused by the non-0.0 values * obtained for the sine and cosine. * If these transforms are not classified as quadrant rotations then * subsequent code which attempts to optimize further operations based * upon the type of the transform will be relegated to its most general * implementation. * <p> * Because quadrant rotations are fairly common, * this class should handle these cases reasonably quickly, both in * applying the rotations to the transform and in applying the resulting * transform to the coordinates. * To facilitate this optimal handling, the methods which take an angle * of rotation measured in radians attempt to detect angles that are * intended to be quadrant rotations and treat them as such. * These methods therefore treat an angle <em>theta</em> as a quadrant * rotation if either <code>Math.sin(<em>theta</em>)</code> or * <code>Math.cos(<em>theta</em>)</code> returns exactly 1.0 or -1.0. * As a rule of thumb, this property holds true for a range of * approximately 0.0000000211 radians (or 0.00000121 degrees) around * small multiples of <code>Math.PI/2.0</code>. * * @author Jim Graham * @since 1.2 */ public class AffineTransform implements Cloneable, java.io.Serializable { /* * This constant is only useful for the cached type field. * It indicates that the type has been decached and must be recalculated. */ private static final int TYPE_UNKNOWN = -1; /** * This constant indicates that the transform defined by this object * is an identity transform. * An identity transform is one in which the output coordinates are * always the same as the input coordinates. * If this transform is anything other than the identity transform, * the type will either be the constant GENERAL_TRANSFORM or a * combination of the appropriate flag bits for the various coordinate * conversions that this transform performs. * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_IDENTITY = 0; /** * This flag bit indicates that the transform defined by this object * performs a translation in addition to the conversions indicated * by other flag bits. * A translation moves the coordinates by a constant amount in x * and y without changing the length or angle of vectors. * @see #TYPE_IDENTITY * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_TRANSLATION = 1; /** * This flag bit indicates that the transform defined by this object * performs a uniform scale in addition to the conversions indicated * by other flag bits. * A uniform scale multiplies the length of vectors by the same amount * in both the x and y directions without changing the angle between * vectors. * This flag bit is mutually exclusive with the TYPE_GENERAL_SCALE flag. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_UNIFORM_SCALE = 2; /** * This flag bit indicates that the transform defined by this object * performs a general scale in addition to the conversions indicated * by other flag bits. * A general scale multiplies the length of vectors by different * amounts in the x and y directions without changing the angle * between perpendicular vectors. * This flag bit is mutually exclusive with the TYPE_UNIFORM_SCALE flag. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_GENERAL_SCALE = 4; /** * This constant is a bit mask for any of the scale flag bits. * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @since 1.2 */ public static final int TYPE_MASK_SCALE = (TYPE_UNIFORM_SCALE | TYPE_GENERAL_SCALE); /** * This flag bit indicates that the transform defined by this object * performs a mirror image flip about some axis which changes the * normally right handed coordinate system into a left handed * system in addition to the conversions indicated by other flag bits. * A right handed coordinate system is one where the positive X * axis rotates counterclockwise to overlay the positive Y axis * similar to the direction that the fingers on your right hand * curl when you stare end on at your thumb. * A left handed coordinate system is one where the positive X * axis rotates clockwise to overlay the positive Y axis similar * to the direction that the fingers on your left hand curl. * There is no mathematical way to determine the angle of the * original flipping or mirroring transformation since all angles * of flip are identical given an appropriate adjusting rotation. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_FLIP = 64; /* NOTE: TYPE_FLIP was added after GENERAL_TRANSFORM was in public * circulation and the flag bits could no longer be conveniently * renumbered without introducing binary incompatibility in outside * code. */ /** * This flag bit indicates that the transform defined by this object * performs a quadrant rotation by some multiple of 90 degrees in * addition to the conversions indicated by other flag bits. * A rotation changes the angles of vectors by the same amount * regardless of the original direction of the vector and without * changing the length of the vector. * This flag bit is mutually exclusive with the TYPE_GENERAL_ROTATION flag. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_QUADRANT_ROTATION = 8; /** * This flag bit indicates that the transform defined by this object * performs a rotation by an arbitrary angle in addition to the * conversions indicated by other flag bits. * A rotation changes the angles of vectors by the same amount * regardless of the original direction of the vector and without * changing the length of the vector. * This flag bit is mutually exclusive with the * TYPE_QUADRANT_ROTATION flag. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #getType * @since 1.2 */ public static final int TYPE_GENERAL_ROTATION = 16; /** * This constant is a bit mask for any of the rotation flag bits. * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @since 1.2 */ public static final int TYPE_MASK_ROTATION = (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_ROTATION); /** * This constant indicates that the transform defined by this object * performs an arbitrary conversion of the input coordinates. * If this transform can be classified by any of the above constants, * the type will either be the constant TYPE_IDENTITY or a * combination of the appropriate flag bits for the various coordinate * conversions that this transform performs. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #getType * @since 1.2 */ public static final int TYPE_GENERAL_TRANSFORM = 32; /** * This constant is used for the internal state variable to indicate * that no calculations need to be performed and that the source * coordinates only need to be copied to their destinations to * complete the transformation equation of this transform. * @see #APPLY_TRANSLATE * @see #APPLY_SCALE * @see #APPLY_SHEAR * @see #state */ static final int APPLY_IDENTITY = 0; /** * This constant is used for the internal state variable to indicate * that the translation components of the matrix (m02 and m12) need * to be added to complete the transformation equation of this transform. * @see #APPLY_IDENTITY * @see #APPLY_SCALE * @see #APPLY_SHEAR * @see #state */ static final int APPLY_TRANSLATE = 1; /** * This constant is used for the internal state variable to indicate * that the scaling components of the matrix (m00 and m11) need * to be factored in to complete the transformation equation of * this transform. If the APPLY_SHEAR bit is also set then it * indicates that the scaling components are not both 0.0. If the * APPLY_SHEAR bit is not also set then it indicates that the * scaling components are not both 1.0. If neither the APPLY_SHEAR * nor the APPLY_SCALE bits are set then the scaling components * are both 1.0, which means that the x and y components contribute * to the transformed coordinate, but they are not multiplied by * any scaling factor. * @see #APPLY_IDENTITY * @see #APPLY_TRANSLATE * @see #APPLY_SHEAR * @see #state */ static final int APPLY_SCALE = 2; /** * This constant is used for the internal state variable to indicate * that the shearing components of the matrix (m01 and m10) need * to be factored in to complete the transformation equation of this * transform. The presence of this bit in the state variable changes * the interpretation of the APPLY_SCALE bit as indicated in its * documentation. * @see #APPLY_IDENTITY * @see #APPLY_TRANSLATE * @see #APPLY_SCALE * @see #state */ static final int APPLY_SHEAR = 4; /* * For methods which combine together the state of two separate * transforms and dispatch based upon the combination, these constants * specify how far to shift one of the states so that the two states * are mutually non-interfering and provide constants for testing the * bits of the shifted (HI) state. The methods in this class use * the convention that the state of "this" transform is unshifted and * the state of the "other" or "argument" transform is shifted (HI). */ private static final int HI_SHIFT = 3; private static final int HI_IDENTITY = APPLY_IDENTITY << HI_SHIFT; private static final int HI_TRANSLATE = APPLY_TRANSLATE << HI_SHIFT; private static final int HI_SCALE = APPLY_SCALE << HI_SHIFT; private static final int HI_SHEAR = APPLY_SHEAR << HI_SHIFT; /** * The X coordinate scaling element of the 3x3 * affine transformation matrix. * * @serial */ double m00; /** * The Y coordinate shearing element of the 3x3 * affine transformation matrix. * * @serial */ double m10; /** * The X coordinate shearing element of the 3x3 * affine transformation matrix. * * @serial */ double m01; /** * The Y coordinate scaling element of the 3x3 * affine transformation matrix. * * @serial */ double m11; /** * The X coordinate of the translation element of the * 3x3 affine transformation matrix. * * @serial */ double m02; /** * The Y coordinate of the translation element of the * 3x3 affine transformation matrix. * * @serial */ double m12; /** * This field keeps track of which components of the matrix need to * be applied when performing a transformation. * @see #APPLY_IDENTITY * @see #APPLY_TRANSLATE * @see #APPLY_SCALE * @see #APPLY_SHEAR */ transient int state; /** * This field caches the current transformation type of the matrix. * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_FLIP * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @see #TYPE_UNKNOWN * @see #getType */ private transient int type; private AffineTransform(double m00, double m10, double m01, double m11, double m02, double m12, int state) { this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; this.state = state; this.type = TYPE_UNKNOWN; } /** * Constructs a new <code>AffineTransform</code> representing the * Identity transformation. * @since 1.2 */ public AffineTransform() { m00 = m11 = 1.0; // m01 = m10 = m02 = m12 = 0.0; /* Not needed. */ // state = APPLY_IDENTITY; /* Not needed. */ // type = TYPE_IDENTITY; /* Not needed. */ } /** * Constructs a new <code>AffineTransform</code> that is a copy of * the specified <code>AffineTransform</code> object. * @param Tx the <code>AffineTransform</code> object to copy * @since 1.2 */ public AffineTransform(AffineTransform Tx) { this.m00 = Tx.m00; this.m10 = Tx.m10; this.m01 = Tx.m01; this.m11 = Tx.m11; this.m02 = Tx.m02; this.m12 = Tx.m12; this.state = Tx.state; this.type = Tx.type; } /** * Constructs a new <code>AffineTransform</code> from 6 floating point * values representing the 6 specifiable entries of the 3x3 * transformation matrix. * * @param m00 the X coordinate scaling element of the 3x3 matrix * @param m10 the Y coordinate shearing element of the 3x3 matrix * @param m01 the X coordinate shearing element of the 3x3 matrix * @param m11 the Y coordinate scaling element of the 3x3 matrix * @param m02 the X coordinate translation element of the 3x3 matrix * @param m12 the Y coordinate translation element of the 3x3 matrix * @since 1.2 */ @ConstructorProperties({ "scaleX", "shearY", "shearX", "scaleY", "translateX", "translateY" }) public AffineTransform(float m00, float m10, float m01, float m11, float m02, float m12) { this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; updateState(); } /** * Constructs a new <code>AffineTransform</code> from an array of * floating point values representing either the 4 non-translation * entries or the 6 specifiable entries of the 3x3 transformation * matrix. The values are retrieved from the array as * { m00 m10 m01 m11 [m02 m12]}. * @param flatmatrix the float array containing the values to be set * in the new <code>AffineTransform</code> object. The length of the * array is assumed to be at least 4. If the length of the array is * less than 6, only the first 4 values are taken. If the length of * the array is greater than 6, the first 6 values are taken. * @since 1.2 */ public AffineTransform(float[] flatmatrix) { m00 = flatmatrix[0]; m10 = flatmatrix[1]; m01 = flatmatrix[2]; m11 = flatmatrix[3]; if (flatmatrix.length > 5) { m02 = flatmatrix[4]; m12 = flatmatrix[5]; } updateState(); } /** * Constructs a new <code>AffineTransform</code> from 6 double * precision values representing the 6 specifiable entries of the 3x3 * transformation matrix. * * @param m00 the X coordinate scaling element of the 3x3 matrix * @param m10 the Y coordinate shearing element of the 3x3 matrix * @param m01 the X coordinate shearing element of the 3x3 matrix * @param m11 the Y coordinate scaling element of the 3x3 matrix * @param m02 the X coordinate translation element of the 3x3 matrix * @param m12 the Y coordinate translation element of the 3x3 matrix * @since 1.2 */ public AffineTransform(double m00, double m10, double m01, double m11, double m02, double m12) { this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; updateState(); } /** * Constructs a new <code>AffineTransform</code> from an array of * double precision values representing either the 4 non-translation * entries or the 6 specifiable entries of the 3x3 transformation * matrix. The values are retrieved from the array as * { m00 m10 m01 m11 [m02 m12]}. * @param flatmatrix the double array containing the values to be set * in the new <code>AffineTransform</code> object. The length of the * array is assumed to be at least 4. If the length of the array is * less than 6, only the first 4 values are taken. If the length of * the array is greater than 6, the first 6 values are taken. * @since 1.2 */ public AffineTransform(double[] flatmatrix) { m00 = flatmatrix[0]; m10 = flatmatrix[1]; m01 = flatmatrix[2]; m11 = flatmatrix[3]; if (flatmatrix.length > 5) { m02 = flatmatrix[4]; m12 = flatmatrix[5]; } updateState(); } /** * Returns a transform representing a translation transformation. * The matrix representing the returned transform is: * <pre> * [ 1 0 tx ] * [ 0 1 ty ] * [ 0 0 1 ] * </pre> * @param tx the distance by which coordinates are translated in the * X axis direction * @param ty the distance by which coordinates are translated in the * Y axis direction * @return an <code>AffineTransform</code> object that represents a * translation transformation, created with the specified vector. * @since 1.2 */ public static AffineTransform getTranslateInstance(double tx, double ty) { AffineTransform Tx = new AffineTransform(); Tx.setToTranslation(tx, ty); return Tx; } /** * Returns a transform representing a rotation transformation. * The matrix representing the returned transform is: * <pre> * [ cos(theta) -sin(theta) 0 ] * [ sin(theta) cos(theta) 0 ] * [ 0 0 1 ] * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * @param theta the angle of rotation measured in radians * @return an <code>AffineTransform</code> object that is a rotation * transformation, created with the specified angle of rotation. * @since 1.2 */ public static AffineTransform getRotateInstance(double theta) { AffineTransform Tx = new AffineTransform(); Tx.setToRotation(theta); return Tx; } /** * Returns a transform that rotates coordinates around an anchor point. * This operation is equivalent to translating the coordinates so * that the anchor point is at the origin (S1), then rotating them * about the new origin (S2), and finally translating so that the * intermediate origin is restored to the coordinates of the original * anchor point (S3). * <p> * This operation is equivalent to the following sequence of calls: * <pre> * AffineTransform Tx = new AffineTransform(); * Tx.translate(anchorx, anchory); // S3: final translation * Tx.rotate(theta); // S2: rotate around anchor * Tx.translate(-anchorx, -anchory); // S1: translate anchor to origin * </pre> * The matrix representing the returned transform is: * <pre> * [ cos(theta) -sin(theta) x-x*cos+y*sin ] * [ sin(theta) cos(theta) y-x*sin-y*cos ] * [ 0 0 1 ] * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * * @param theta the angle of rotation measured in radians * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @return an <code>AffineTransform</code> object that rotates * coordinates around the specified point by the specified angle of * rotation. * @since 1.2 */ public static AffineTransform getRotateInstance(double theta, double anchorx, double anchory) { AffineTransform Tx = new AffineTransform(); Tx.setToRotation(theta, anchorx, anchory); return Tx; } /** * Returns a transform that rotates coordinates according to * a rotation vector. * All coordinates rotate about the origin by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * an identity transform is returned. * This operation is equivalent to calling: * <pre> * AffineTransform.getRotateInstance(Math.atan2(vecy, vecx)); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @return an <code>AffineTransform</code> object that rotates * coordinates according to the specified rotation vector. * @since 1.6 */ public static AffineTransform getRotateInstance(double vecx, double vecy) { AffineTransform Tx = new AffineTransform(); Tx.setToRotation(vecx, vecy); return Tx; } /** * Returns a transform that rotates coordinates around an anchor * point according to a rotation vector. * All coordinates rotate about the specified anchor coordinates * by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * an identity transform is returned. * This operation is equivalent to calling: * <pre> * AffineTransform.getRotateInstance(Math.atan2(vecy, vecx), * anchorx, anchory); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @return an <code>AffineTransform</code> object that rotates * coordinates around the specified point according to the * specified rotation vector. * @since 1.6 */ public static AffineTransform getRotateInstance(double vecx, double vecy, double anchorx, double anchory) { AffineTransform Tx = new AffineTransform(); Tx.setToRotation(vecx, vecy, anchorx, anchory); return Tx; } /** * Returns a transform that rotates coordinates by the specified * number of quadrants. * This operation is equivalent to calling: * <pre> * AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * @param numquadrants the number of 90 degree arcs to rotate by * @return an <code>AffineTransform</code> object that rotates * coordinates by the specified number of quadrants. * @since 1.6 */ public static AffineTransform getQuadrantRotateInstance(int numquadrants) { AffineTransform Tx = new AffineTransform(); Tx.setToQuadrantRotation(numquadrants); return Tx; } /** * Returns a transform that rotates coordinates by the specified * number of quadrants around the specified anchor point. * This operation is equivalent to calling: * <pre> * AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0, * anchorx, anchory); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * * @param numquadrants the number of 90 degree arcs to rotate by * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @return an <code>AffineTransform</code> object that rotates * coordinates by the specified number of quadrants around the * specified anchor point. * @since 1.6 */ public static AffineTransform getQuadrantRotateInstance(int numquadrants, double anchorx, double anchory) { AffineTransform Tx = new AffineTransform(); Tx.setToQuadrantRotation(numquadrants, anchorx, anchory); return Tx; } /** * Returns a transform representing a scaling transformation. * The matrix representing the returned transform is: * <pre> * [ sx 0 0 ] * [ 0 sy 0 ] * [ 0 0 1 ] * </pre> * @param sx the factor by which coordinates are scaled along the * X axis direction * @param sy the factor by which coordinates are scaled along the * Y axis direction * @return an <code>AffineTransform</code> object that scales * coordinates by the specified factors. * @since 1.2 */ public static AffineTransform getScaleInstance(double sx, double sy) { AffineTransform Tx = new AffineTransform(); Tx.setToScale(sx, sy); return Tx; } /** * Returns a transform representing a shearing transformation. * The matrix representing the returned transform is: * <pre> * [ 1 shx 0 ] * [ shy 1 0 ] * [ 0 0 1 ] * </pre> * @param shx the multiplier by which coordinates are shifted in the * direction of the positive X axis as a factor of their Y coordinate * @param shy the multiplier by which coordinates are shifted in the * direction of the positive Y axis as a factor of their X coordinate * @return an <code>AffineTransform</code> object that shears * coordinates by the specified multipliers. * @since 1.2 */ public static AffineTransform getShearInstance(double shx, double shy) { AffineTransform Tx = new AffineTransform(); Tx.setToShear(shx, shy); return Tx; } /** * Retrieves the flag bits describing the conversion properties of * this transform. * The return value is either one of the constants TYPE_IDENTITY * or TYPE_GENERAL_TRANSFORM, or a combination of the * appropriate flag bits. * A valid combination of flag bits is an exclusive OR operation * that can combine * the TYPE_TRANSLATION flag bit * in addition to either of the * TYPE_UNIFORM_SCALE or TYPE_GENERAL_SCALE flag bits * as well as either of the * TYPE_QUADRANT_ROTATION or TYPE_GENERAL_ROTATION flag bits. * @return the OR combination of any of the indicated flags that * apply to this transform * @see #TYPE_IDENTITY * @see #TYPE_TRANSLATION * @see #TYPE_UNIFORM_SCALE * @see #TYPE_GENERAL_SCALE * @see #TYPE_QUADRANT_ROTATION * @see #TYPE_GENERAL_ROTATION * @see #TYPE_GENERAL_TRANSFORM * @since 1.2 */ public int getType() { if (type == TYPE_UNKNOWN) { calculateType(); } return type; } /** * This is the utility function to calculate the flag bits when * they have not been cached. * @see #getType */ @SuppressWarnings("fallthrough") private void calculateType() { int ret = TYPE_IDENTITY; boolean sgn0, sgn1; double M0, M1, M2, M3; updateState(); switch (state) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): ret = TYPE_TRANSLATION; /* NOBREAK */ case (APPLY_SHEAR | APPLY_SCALE): if ((M0 = m00) * (M2 = m01) + (M3 = m10) * (M1 = m11) != 0) { // Transformed unit vectors are not perpendicular... this.type = TYPE_GENERAL_TRANSFORM; return; } sgn0 = (M0 >= 0.0); sgn1 = (M1 >= 0.0); if (sgn0 == sgn1) { // sgn(M0) == sgn(M1) therefore sgn(M2) == -sgn(M3) // This is the "unflipped" (right-handed) state if (M0 != M1 || M2 != -M3) { ret |= (TYPE_GENERAL_ROTATION | TYPE_GENERAL_SCALE); } else if (M0 * M1 - M2 * M3 != 1.0) { ret |= (TYPE_GENERAL_ROTATION | TYPE_UNIFORM_SCALE); } else { ret |= TYPE_GENERAL_ROTATION; } } else { // sgn(M0) == -sgn(M1) therefore sgn(M2) == sgn(M3) // This is the "flipped" (left-handed) state if (M0 != -M1 || M2 != M3) { ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP | TYPE_GENERAL_SCALE); } else if (M0 * M1 - M2 * M3 != 1.0) { ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP | TYPE_UNIFORM_SCALE); } else { ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP); } } break; case (APPLY_SHEAR | APPLY_TRANSLATE): ret = TYPE_TRANSLATION; /* NOBREAK */ case (APPLY_SHEAR): sgn0 = ((M0 = m01) >= 0.0); sgn1 = ((M1 = m10) >= 0.0); if (sgn0 != sgn1) { // Different signs - simple 90 degree rotation if (M0 != -M1) { ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE); } else if (M0 != 1.0 && M0 != -1.0) { ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE); } else { ret |= TYPE_QUADRANT_ROTATION; } } else { // Same signs - 90 degree rotation plus an axis flip too if (M0 == M1) { ret |= (TYPE_QUADRANT_ROTATION | TYPE_FLIP | TYPE_UNIFORM_SCALE); } else { ret |= (TYPE_QUADRANT_ROTATION | TYPE_FLIP | TYPE_GENERAL_SCALE); } } break; case (APPLY_SCALE | APPLY_TRANSLATE): ret = TYPE_TRANSLATION; /* NOBREAK */ case (APPLY_SCALE): sgn0 = ((M0 = m00) >= 0.0); sgn1 = ((M1 = m11) >= 0.0); if (sgn0 == sgn1) { if (sgn0) { // Both scaling factors non-negative - simple scale // Note: APPLY_SCALE implies M0, M1 are not both 1 if (M0 == M1) { ret |= TYPE_UNIFORM_SCALE; } else { ret |= TYPE_GENERAL_SCALE; } } else { // Both scaling factors negative - 180 degree rotation if (M0 != M1) { ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE); } else if (M0 != -1.0) { ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE); } else { ret |= TYPE_QUADRANT_ROTATION; } } } else { // Scaling factor signs different - flip about some axis if (M0 == -M1) { if (M0 == 1.0 || M0 == -1.0) { ret |= TYPE_FLIP; } else { ret |= (TYPE_FLIP | TYPE_UNIFORM_SCALE); } } else { ret |= (TYPE_FLIP | TYPE_GENERAL_SCALE); } } break; case (APPLY_TRANSLATE): ret = TYPE_TRANSLATION; break; case (APPLY_IDENTITY): break; } this.type = ret; } /** * Returns the determinant of the matrix representation of the transform. * The determinant is useful both to determine if the transform can * be inverted and to get a single value representing the * combined X and Y scaling of the transform. * <p> * If the determinant is non-zero, then this transform is * invertible and the various methods that depend on the inverse * transform do not need to throw a * {@link NoninvertibleTransformException}. * If the determinant is zero then this transform can not be * inverted since the transform maps all input coordinates onto * a line or a point. * If the determinant is near enough to zero then inverse transform * operations might not carry enough precision to produce meaningful * results. * <p> * If this transform represents a uniform scale, as indicated by * the <code>getType</code> method then the determinant also * represents the square of the uniform scale factor by which all of * the points are expanded from or contracted towards the origin. * If this transform represents a non-uniform scale or more general * transform then the determinant is not likely to represent a * value useful for any purpose other than determining if inverse * transforms are possible. * <p> * Mathematically, the determinant is calculated using the formula: * <pre> * | m00 m01 m02 | * | m10 m11 m12 | = m00 * m11 - m01 * m10 * | 0 0 1 | * </pre> * * @return the determinant of the matrix used to transform the * coordinates. * @see #getType * @see #createInverse * @see #inverseTransform * @see #TYPE_UNIFORM_SCALE * @since 1.2 */ @SuppressWarnings("fallthrough") public double getDeterminant() { switch (state) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SHEAR | APPLY_SCALE): return m00 * m11 - m01 * m10; case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): return -(m01 * m10); case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): return m00 * m11; case (APPLY_TRANSLATE): case (APPLY_IDENTITY): return 1.0; } } /** * Manually recalculates the state of the transform when the matrix * changes too much to predict the effects on the state. * The following table specifies what the various settings of the * state field say about the values of the corresponding matrix * element fields. * Note that the rules governing the SCALE fields are slightly * different depending on whether the SHEAR flag is also set. * <pre> * SCALE SHEAR TRANSLATE * m00/m11 m01/m10 m02/m12 * * IDENTITY 1.0 0.0 0.0 * TRANSLATE (TR) 1.0 0.0 not both 0.0 * SCALE (SC) not both 1.0 0.0 0.0 * TR | SC not both 1.0 0.0 not both 0.0 * SHEAR (SH) 0.0 not both 0.0 0.0 * TR | SH 0.0 not both 0.0 not both 0.0 * SC | SH not both 0.0 not both 0.0 0.0 * TR | SC | SH not both 0.0 not both 0.0 not both 0.0 * </pre> */ void updateState() { if (m01 == 0.0 && m10 == 0.0) { if (m00 == 1.0 && m11 == 1.0) { if (m02 == 0.0 && m12 == 0.0) { state = APPLY_IDENTITY; type = TYPE_IDENTITY; } else { state = APPLY_TRANSLATE; type = TYPE_TRANSLATION; } } else { if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SCALE; type = TYPE_UNKNOWN; } else { state = (APPLY_SCALE | APPLY_TRANSLATE); type = TYPE_UNKNOWN; } } } else { if (m00 == 0.0 && m11 == 0.0) { if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SHEAR; type = TYPE_UNKNOWN; } else { state = (APPLY_SHEAR | APPLY_TRANSLATE); type = TYPE_UNKNOWN; } } else { if (m02 == 0.0 && m12 == 0.0) { state = (APPLY_SHEAR | APPLY_SCALE); type = TYPE_UNKNOWN; } else { state = (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE); type = TYPE_UNKNOWN; } } } } /* * Convenience method used internally to throw exceptions when * a case was forgotten in a switch statement. */ private void stateError() { throw new InternalError("missing case in transform state switch"); } /** * Retrieves the 6 specifiable values in the 3x3 affine transformation * matrix and places them into an array of double precisions values. * The values are stored in the array as * { m00 m10 m01 m11 m02 m12 }. * An array of 4 doubles can also be specified, in which case only the * first four elements representing the non-transform * parts of the array are retrieved and the values are stored into * the array as { m00 m10 m01 m11 } * @param flatmatrix the double array used to store the returned * values. * @see #getScaleX * @see #getScaleY * @see #getShearX * @see #getShearY * @see #getTranslateX * @see #getTranslateY * @since 1.2 */ public void getMatrix(double[] flatmatrix) { flatmatrix[0] = m00; flatmatrix[1] = m10; flatmatrix[2] = m01; flatmatrix[3] = m11; if (flatmatrix.length > 5) { flatmatrix[4] = m02; flatmatrix[5] = m12; } } /** * Returns the X coordinate scaling element (m00) of the 3x3 * affine transformation matrix. * @return a double value that is the X coordinate of the scaling * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getScaleX() { return m00; } /** * Returns the Y coordinate scaling element (m11) of the 3x3 * affine transformation matrix. * @return a double value that is the Y coordinate of the scaling * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getScaleY() { return m11; } /** * Returns the X coordinate shearing element (m01) of the 3x3 * affine transformation matrix. * @return a double value that is the X coordinate of the shearing * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getShearX() { return m01; } /** * Returns the Y coordinate shearing element (m10) of the 3x3 * affine transformation matrix. * @return a double value that is the Y coordinate of the shearing * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getShearY() { return m10; } /** * Returns the X coordinate of the translation element (m02) of the * 3x3 affine transformation matrix. * @return a double value that is the X coordinate of the translation * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getTranslateX() { return m02; } /** * Returns the Y coordinate of the translation element (m12) of the * 3x3 affine transformation matrix. * @return a double value that is the Y coordinate of the translation * element of the affine transformation matrix. * @see #getMatrix * @since 1.2 */ public double getTranslateY() { return m12; } /** * Concatenates this transform with a translation transformation. * This is equivalent to calling concatenate(T), where T is an * <code>AffineTransform</code> represented by the following matrix: * <pre> * [ 1 0 tx ] * [ 0 1 ty ] * [ 0 0 1 ] * </pre> * @param tx the distance by which coordinates are translated in the * X axis direction * @param ty the distance by which coordinates are translated in the * Y axis direction * @since 1.2 */ public void translate(double tx, double ty) { switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): m02 = tx * m00 + ty * m01 + m02; m12 = tx * m10 + ty * m11 + m12; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SHEAR | APPLY_SCALE; if (type != TYPE_UNKNOWN) { type -= TYPE_TRANSLATION; } } return; case (APPLY_SHEAR | APPLY_SCALE): m02 = tx * m00 + ty * m01; m12 = tx * m10 + ty * m11; if (m02 != 0.0 || m12 != 0.0) { state = APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE; type |= TYPE_TRANSLATION; } return; case (APPLY_SHEAR | APPLY_TRANSLATE): m02 = ty * m01 + m02; m12 = tx * m10 + m12; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SHEAR; if (type != TYPE_UNKNOWN) { type -= TYPE_TRANSLATION; } } return; case (APPLY_SHEAR): m02 = ty * m01; m12 = tx * m10; if (m02 != 0.0 || m12 != 0.0) { state = APPLY_SHEAR | APPLY_TRANSLATE; type |= TYPE_TRANSLATION; } return; case (APPLY_SCALE | APPLY_TRANSLATE): m02 = tx * m00 + m02; m12 = ty * m11 + m12; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SCALE; if (type != TYPE_UNKNOWN) { type -= TYPE_TRANSLATION; } } return; case (APPLY_SCALE): m02 = tx * m00; m12 = ty * m11; if (m02 != 0.0 || m12 != 0.0) { state = APPLY_SCALE | APPLY_TRANSLATE; type |= TYPE_TRANSLATION; } return; case (APPLY_TRANSLATE): m02 = tx + m02; m12 = ty + m12; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_IDENTITY; type = TYPE_IDENTITY; } return; case (APPLY_IDENTITY): m02 = tx; m12 = ty; if (tx != 0.0 || ty != 0.0) { state = APPLY_TRANSLATE; type = TYPE_TRANSLATION; } return; } } // Utility methods to optimize rotate methods. // These tables translate the flags during predictable quadrant // rotations where the shear and scale values are swapped and negated. private static final int rot90conversion[] = { /* IDENTITY => */ APPLY_SHEAR, /* TRANSLATE (TR) => */ APPLY_SHEAR | APPLY_TRANSLATE, /* SCALE (SC) => */ APPLY_SHEAR, /* SC | TR => */ APPLY_SHEAR | APPLY_TRANSLATE, /* SHEAR (SH) => */ APPLY_SCALE, /* SH | TR => */ APPLY_SCALE | APPLY_TRANSLATE, /* SH | SC => */ APPLY_SHEAR | APPLY_SCALE, /* SH | SC | TR => */ APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE, }; private final void rotate90() { double M0 = m00; m00 = m01; m01 = -M0; M0 = m10; m10 = m11; m11 = -M0; int state = rot90conversion[this.state]; if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE && m00 == 1.0 && m11 == 1.0) { state -= APPLY_SCALE; } this.state = state; type = TYPE_UNKNOWN; } private final void rotate180() { m00 = -m00; m11 = -m11; int state = this.state; if ((state & (APPLY_SHEAR)) != 0) { // If there was a shear, then this rotation has no // effect on the state. m01 = -m01; m10 = -m10; } else { // No shear means the SCALE state may toggle when // m00 and m11 are negated. if (m00 == 1.0 && m11 == 1.0) { this.state = state & ~APPLY_SCALE; } else { this.state = state | APPLY_SCALE; } } type = TYPE_UNKNOWN; } private final void rotate270() { double M0 = m00; m00 = -m01; m01 = M0; M0 = m10; m10 = -m11; m11 = M0; int state = rot90conversion[this.state]; if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE && m00 == 1.0 && m11 == 1.0) { state -= APPLY_SCALE; } this.state = state; type = TYPE_UNKNOWN; } /** * Concatenates this transform with a rotation transformation. * This is equivalent to calling concatenate(R), where R is an * <code>AffineTransform</code> represented by the following matrix: * <pre> * [ cos(theta) -sin(theta) 0 ] * [ sin(theta) cos(theta) 0 ] * [ 0 0 1 ] * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * @param theta the angle of rotation measured in radians * @since 1.2 */ public void rotate(double theta) { double sin = Math.sin(theta); if (sin == 1.0) { rotate90(); } else if (sin == -1.0) { rotate270(); } else { double cos = Math.cos(theta); if (cos == -1.0) { rotate180(); } else if (cos != 1.0) { double M0, M1; M0 = m00; M1 = m01; m00 = cos * M0 + sin * M1; m01 = -sin * M0 + cos * M1; M0 = m10; M1 = m11; m10 = cos * M0 + sin * M1; m11 = -sin * M0 + cos * M1; updateState(); } } } /** * Concatenates this transform with a transform that rotates * coordinates around an anchor point. * This operation is equivalent to translating the coordinates so * that the anchor point is at the origin (S1), then rotating them * about the new origin (S2), and finally translating so that the * intermediate origin is restored to the coordinates of the original * anchor point (S3). * <p> * This operation is equivalent to the following sequence of calls: * <pre> * translate(anchorx, anchory); // S3: final translation * rotate(theta); // S2: rotate around anchor * translate(-anchorx, -anchory); // S1: translate anchor to origin * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * * @param theta the angle of rotation measured in radians * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.2 */ public void rotate(double theta, double anchorx, double anchory) { // REMIND: Simple for now - optimize later translate(anchorx, anchory); rotate(theta); translate(-anchorx, -anchory); } /** * Concatenates this transform with a transform that rotates * coordinates according to a rotation vector. * All coordinates rotate about the origin by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * no additional rotation is added to this transform. * This operation is equivalent to calling: * <pre> * rotate(Math.atan2(vecy, vecx)); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @since 1.6 */ public void rotate(double vecx, double vecy) { if (vecy == 0.0) { if (vecx < 0.0) { rotate180(); } // If vecx > 0.0 - no rotation // If vecx == 0.0 - undefined rotation - treat as no rotation } else if (vecx == 0.0) { if (vecy > 0.0) { rotate90(); } else { // vecy must be < 0.0 rotate270(); } } else { double len = Math.sqrt(vecx * vecx + vecy * vecy); double sin = vecy / len; double cos = vecx / len; double M0, M1; M0 = m00; M1 = m01; m00 = cos * M0 + sin * M1; m01 = -sin * M0 + cos * M1; M0 = m10; M1 = m11; m10 = cos * M0 + sin * M1; m11 = -sin * M0 + cos * M1; updateState(); } } /** * Concatenates this transform with a transform that rotates * coordinates around an anchor point according to a rotation * vector. * All coordinates rotate about the specified anchor coordinates * by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * the transform is not modified in any way. * This method is equivalent to calling: * <pre> * rotate(Math.atan2(vecy, vecx), anchorx, anchory); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.6 */ public void rotate(double vecx, double vecy, double anchorx, double anchory) { // REMIND: Simple for now - optimize later translate(anchorx, anchory); rotate(vecx, vecy); translate(-anchorx, -anchory); } /** * Concatenates this transform with a transform that rotates * coordinates by the specified number of quadrants. * This is equivalent to calling: * <pre> * rotate(numquadrants * Math.PI / 2.0); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * @param numquadrants the number of 90 degree arcs to rotate by * @since 1.6 */ public void quadrantRotate(int numquadrants) { switch (numquadrants & 3) { case 0: break; case 1: rotate90(); break; case 2: rotate180(); break; case 3: rotate270(); break; } } /** * Concatenates this transform with a transform that rotates * coordinates by the specified number of quadrants around * the specified anchor point. * This method is equivalent to calling: * <pre> * rotate(numquadrants * Math.PI / 2.0, anchorx, anchory); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * * @param numquadrants the number of 90 degree arcs to rotate by * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.6 */ public void quadrantRotate(int numquadrants, double anchorx, double anchory) { switch (numquadrants & 3) { case 0: return; case 1: m02 += anchorx * (m00 - m01) + anchory * (m01 + m00); m12 += anchorx * (m10 - m11) + anchory * (m11 + m10); rotate90(); break; case 2: m02 += anchorx * (m00 + m00) + anchory * (m01 + m01); m12 += anchorx * (m10 + m10) + anchory * (m11 + m11); rotate180(); break; case 3: m02 += anchorx * (m00 + m01) + anchory * (m01 - m00); m12 += anchorx * (m10 + m11) + anchory * (m11 - m10); rotate270(); break; } if (m02 == 0.0 && m12 == 0.0) { state &= ~APPLY_TRANSLATE; } else { state |= APPLY_TRANSLATE; } } /** * Concatenates this transform with a scaling transformation. * This is equivalent to calling concatenate(S), where S is an * <code>AffineTransform</code> represented by the following matrix: * <pre> * [ sx 0 0 ] * [ 0 sy 0 ] * [ 0 0 1 ] * </pre> * @param sx the factor by which coordinates are scaled along the * X axis direction * @param sy the factor by which coordinates are scaled along the * Y axis direction * @since 1.2 */ @SuppressWarnings("fallthrough") public void scale(double sx, double sy) { int state = this.state; switch (state) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SHEAR | APPLY_SCALE): m00 *= sx; m11 *= sy; /* NOBREAK */ case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): m01 *= sy; m10 *= sx; if (m01 == 0 && m10 == 0) { state &= APPLY_TRANSLATE; if (m00 == 1.0 && m11 == 1.0) { this.type = (state == APPLY_IDENTITY ? TYPE_IDENTITY : TYPE_TRANSLATION); } else { state |= APPLY_SCALE; this.type = TYPE_UNKNOWN; } this.state = state; } return; case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): m00 *= sx; m11 *= sy; if (m00 == 1.0 && m11 == 1.0) { this.state = (state &= APPLY_TRANSLATE); this.type = (state == APPLY_IDENTITY ? TYPE_IDENTITY : TYPE_TRANSLATION); } else { this.type = TYPE_UNKNOWN; } return; case (APPLY_TRANSLATE): case (APPLY_IDENTITY): m00 = sx; m11 = sy; if (sx != 1.0 || sy != 1.0) { this.state = state | APPLY_SCALE; this.type = TYPE_UNKNOWN; } return; } } /** * Concatenates this transform with a shearing transformation. * This is equivalent to calling concatenate(SH), where SH is an * <code>AffineTransform</code> represented by the following matrix: * <pre> * [ 1 shx 0 ] * [ shy 1 0 ] * [ 0 0 1 ] * </pre> * @param shx the multiplier by which coordinates are shifted in the * direction of the positive X axis as a factor of their Y coordinate * @param shy the multiplier by which coordinates are shifted in the * direction of the positive Y axis as a factor of their X coordinate * @since 1.2 */ public void shear(double shx, double shy) { int state = this.state; switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SHEAR | APPLY_SCALE): double M0, M1; M0 = m00; M1 = m01; m00 = M0 + M1 * shy; m01 = M0 * shx + M1; M0 = m10; M1 = m11; m10 = M0 + M1 * shy; m11 = M0 * shx + M1; updateState(); return; case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): m00 = m01 * shy; m11 = m10 * shx; if (m00 != 0.0 || m11 != 0.0) { this.state = state | APPLY_SCALE; } this.type = TYPE_UNKNOWN; return; case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): m01 = m00 * shx; m10 = m11 * shy; if (m01 != 0.0 || m10 != 0.0) { this.state = state | APPLY_SHEAR; } this.type = TYPE_UNKNOWN; return; case (APPLY_TRANSLATE): case (APPLY_IDENTITY): m01 = shx; m10 = shy; if (m01 != 0.0 || m10 != 0.0) { this.state = state | APPLY_SCALE | APPLY_SHEAR; this.type = TYPE_UNKNOWN; } return; } } /** * Resets this transform to the Identity transform. * @since 1.2 */ public void setToIdentity() { m00 = m11 = 1.0; m10 = m01 = m02 = m12 = 0.0; state = APPLY_IDENTITY; type = TYPE_IDENTITY; } /** * Sets this transform to a translation transformation. * The matrix representing this transform becomes: * <pre> * [ 1 0 tx ] * [ 0 1 ty ] * [ 0 0 1 ] * </pre> * @param tx the distance by which coordinates are translated in the * X axis direction * @param ty the distance by which coordinates are translated in the * Y axis direction * @since 1.2 */ public void setToTranslation(double tx, double ty) { m00 = 1.0; m10 = 0.0; m01 = 0.0; m11 = 1.0; m02 = tx; m12 = ty; if (tx != 0.0 || ty != 0.0) { state = APPLY_TRANSLATE; type = TYPE_TRANSLATION; } else { state = APPLY_IDENTITY; type = TYPE_IDENTITY; } } /** * Sets this transform to a rotation transformation. * The matrix representing this transform becomes: * <pre> * [ cos(theta) -sin(theta) 0 ] * [ sin(theta) cos(theta) 0 ] * [ 0 0 1 ] * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * @param theta the angle of rotation measured in radians * @since 1.2 */ public void setToRotation(double theta) { double sin = Math.sin(theta); double cos; if (sin == 1.0 || sin == -1.0) { cos = 0.0; state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; } else { cos = Math.cos(theta); if (cos == -1.0) { sin = 0.0; state = APPLY_SCALE; type = TYPE_QUADRANT_ROTATION; } else if (cos == 1.0) { sin = 0.0; state = APPLY_IDENTITY; type = TYPE_IDENTITY; } else { state = APPLY_SHEAR | APPLY_SCALE; type = TYPE_GENERAL_ROTATION; } } m00 = cos; m10 = sin; m01 = -sin; m11 = cos; m02 = 0.0; m12 = 0.0; } /** * Sets this transform to a translated rotation transformation. * This operation is equivalent to translating the coordinates so * that the anchor point is at the origin (S1), then rotating them * about the new origin (S2), and finally translating so that the * intermediate origin is restored to the coordinates of the original * anchor point (S3). * <p> * This operation is equivalent to the following sequence of calls: * <pre> * setToTranslation(anchorx, anchory); // S3: final translation * rotate(theta); // S2: rotate around anchor * translate(-anchorx, -anchory); // S1: translate anchor to origin * </pre> * The matrix representing this transform becomes: * <pre> * [ cos(theta) -sin(theta) x-x*cos+y*sin ] * [ sin(theta) cos(theta) y-x*sin-y*cos ] * [ 0 0 1 ] * </pre> * Rotating by a positive angle theta rotates points on the positive * X axis toward the positive Y axis. * Note also the discussion of * <a href="#quadrantapproximation">Handling 90-Degree Rotations</a> * above. * * @param theta the angle of rotation measured in radians * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.2 */ public void setToRotation(double theta, double anchorx, double anchory) { setToRotation(theta); double sin = m10; double oneMinusCos = 1.0 - m00; m02 = anchorx * oneMinusCos + anchory * sin; m12 = anchory * oneMinusCos - anchorx * sin; if (m02 != 0.0 || m12 != 0.0) { state |= APPLY_TRANSLATE; type |= TYPE_TRANSLATION; } } /** * Sets this transform to a rotation transformation that rotates * coordinates according to a rotation vector. * All coordinates rotate about the origin by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * the transform is set to an identity transform. * This operation is equivalent to calling: * <pre> * setToRotation(Math.atan2(vecy, vecx)); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @since 1.6 */ public void setToRotation(double vecx, double vecy) { double sin, cos; if (vecy == 0) { sin = 0.0; if (vecx < 0.0) { cos = -1.0; state = APPLY_SCALE; type = TYPE_QUADRANT_ROTATION; } else { cos = 1.0; state = APPLY_IDENTITY; type = TYPE_IDENTITY; } } else if (vecx == 0) { cos = 0.0; sin = (vecy > 0.0) ? 1.0 : -1.0; state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; } else { double len = Math.sqrt(vecx * vecx + vecy * vecy); cos = vecx / len; sin = vecy / len; state = APPLY_SHEAR | APPLY_SCALE; type = TYPE_GENERAL_ROTATION; } m00 = cos; m10 = sin; m01 = -sin; m11 = cos; m02 = 0.0; m12 = 0.0; } /** * Sets this transform to a rotation transformation that rotates * coordinates around an anchor point according to a rotation * vector. * All coordinates rotate about the specified anchor coordinates * by the same amount. * The amount of rotation is such that coordinates along the former * positive X axis will subsequently align with the vector pointing * from the origin to the specified vector coordinates. * If both <code>vecx</code> and <code>vecy</code> are 0.0, * the transform is set to an identity transform. * This operation is equivalent to calling: * <pre> * setToTranslation(Math.atan2(vecy, vecx), anchorx, anchory); * </pre> * * @param vecx the X coordinate of the rotation vector * @param vecy the Y coordinate of the rotation vector * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.6 */ public void setToRotation(double vecx, double vecy, double anchorx, double anchory) { setToRotation(vecx, vecy); double sin = m10; double oneMinusCos = 1.0 - m00; m02 = anchorx * oneMinusCos + anchory * sin; m12 = anchory * oneMinusCos - anchorx * sin; if (m02 != 0.0 || m12 != 0.0) { state |= APPLY_TRANSLATE; type |= TYPE_TRANSLATION; } } /** * Sets this transform to a rotation transformation that rotates * coordinates by the specified number of quadrants. * This operation is equivalent to calling: * <pre> * setToRotation(numquadrants * Math.PI / 2.0); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * @param numquadrants the number of 90 degree arcs to rotate by * @since 1.6 */ public void setToQuadrantRotation(int numquadrants) { switch (numquadrants & 3) { case 0: m00 = 1.0; m10 = 0.0; m01 = 0.0; m11 = 1.0; m02 = 0.0; m12 = 0.0; state = APPLY_IDENTITY; type = TYPE_IDENTITY; break; case 1: m00 = 0.0; m10 = 1.0; m01 = -1.0; m11 = 0.0; m02 = 0.0; m12 = 0.0; state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; break; case 2: m00 = -1.0; m10 = 0.0; m01 = 0.0; m11 = -1.0; m02 = 0.0; m12 = 0.0; state = APPLY_SCALE; type = TYPE_QUADRANT_ROTATION; break; case 3: m00 = 0.0; m10 = -1.0; m01 = 1.0; m11 = 0.0; m02 = 0.0; m12 = 0.0; state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; break; } } /** * Sets this transform to a translated rotation transformation * that rotates coordinates by the specified number of quadrants * around the specified anchor point. * This operation is equivalent to calling: * <pre> * setToRotation(numquadrants * Math.PI / 2.0, anchorx, anchory); * </pre> * Rotating by a positive number of quadrants rotates points on * the positive X axis toward the positive Y axis. * * @param numquadrants the number of 90 degree arcs to rotate by * @param anchorx the X coordinate of the rotation anchor point * @param anchory the Y coordinate of the rotation anchor point * @since 1.6 */ public void setToQuadrantRotation(int numquadrants, double anchorx, double anchory) { switch (numquadrants & 3) { case 0: m00 = 1.0; m10 = 0.0; m01 = 0.0; m11 = 1.0; m02 = 0.0; m12 = 0.0; state = APPLY_IDENTITY; type = TYPE_IDENTITY; break; case 1: m00 = 0.0; m10 = 1.0; m01 = -1.0; m11 = 0.0; m02 = anchorx + anchory; m12 = anchory - anchorx; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; } else { state = APPLY_SHEAR | APPLY_TRANSLATE; type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION; } break; case 2: m00 = -1.0; m10 = 0.0; m01 = 0.0; m11 = -1.0; m02 = anchorx + anchorx; m12 = anchory + anchory; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SCALE; type = TYPE_QUADRANT_ROTATION; } else { state = APPLY_SCALE | APPLY_TRANSLATE; type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION; } break; case 3: m00 = 0.0; m10 = -1.0; m01 = 1.0; m11 = 0.0; m02 = anchorx - anchory; m12 = anchory + anchorx; if (m02 == 0.0 && m12 == 0.0) { state = APPLY_SHEAR; type = TYPE_QUADRANT_ROTATION; } else { state = APPLY_SHEAR | APPLY_TRANSLATE; type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION; } break; } } /** * Sets this transform to a scaling transformation. * The matrix representing this transform becomes: * <pre> * [ sx 0 0 ] * [ 0 sy 0 ] * [ 0 0 1 ] * </pre> * @param sx the factor by which coordinates are scaled along the * X axis direction * @param sy the factor by which coordinates are scaled along the * Y axis direction * @since 1.2 */ public void setToScale(double sx, double sy) { m00 = sx; m10 = 0.0; m01 = 0.0; m11 = sy; m02 = 0.0; m12 = 0.0; if (sx != 1.0 || sy != 1.0) { state = APPLY_SCALE; type = TYPE_UNKNOWN; } else { state = APPLY_IDENTITY; type = TYPE_IDENTITY; } } /** * Sets this transform to a shearing transformation. * The matrix representing this transform becomes: * <pre> * [ 1 shx 0 ] * [ shy 1 0 ] * [ 0 0 1 ] * </pre> * @param shx the multiplier by which coordinates are shifted in the * direction of the positive X axis as a factor of their Y coordinate * @param shy the multiplier by which coordinates are shifted in the * direction of the positive Y axis as a factor of their X coordinate * @since 1.2 */ public void setToShear(double shx, double shy) { m00 = 1.0; m01 = shx; m10 = shy; m11 = 1.0; m02 = 0.0; m12 = 0.0; if (shx != 0.0 || shy != 0.0) { state = (APPLY_SHEAR | APPLY_SCALE); type = TYPE_UNKNOWN; } else { state = APPLY_IDENTITY; type = TYPE_IDENTITY; } } /** * Sets this transform to a copy of the transform in the specified * <code>AffineTransform</code> object. * @param Tx the <code>AffineTransform</code> object from which to * copy the transform * @since 1.2 */ public void setTransform(AffineTransform Tx) { this.m00 = Tx.m00; this.m10 = Tx.m10; this.m01 = Tx.m01; this.m11 = Tx.m11; this.m02 = Tx.m02; this.m12 = Tx.m12; this.state = Tx.state; this.type = Tx.type; } /** * Sets this transform to the matrix specified by the 6 * double precision values. * * @param m00 the X coordinate scaling element of the 3x3 matrix * @param m10 the Y coordinate shearing element of the 3x3 matrix * @param m01 the X coordinate shearing element of the 3x3 matrix * @param m11 the Y coordinate scaling element of the 3x3 matrix * @param m02 the X coordinate translation element of the 3x3 matrix * @param m12 the Y coordinate translation element of the 3x3 matrix * @since 1.2 */ public void setTransform(double m00, double m10, double m01, double m11, double m02, double m12) { this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; updateState(); } /** * Concatenates an <code>AffineTransform</code> <code>Tx</code> to * this <code>AffineTransform</code> Cx in the most commonly useful * way to provide a new user space * that is mapped to the former user space by <code>Tx</code>. * Cx is updated to perform the combined transformation. * Transforming a point p by the updated transform Cx' is * equivalent to first transforming p by <code>Tx</code> and then * transforming the result by the original transform Cx like this: * Cx'(p) = Cx(Tx(p)) * In matrix notation, if this transform Cx is * represented by the matrix [this] and <code>Tx</code> is represented * by the matrix [Tx] then this method does the following: * <pre> * [this] = [this] x [Tx] * </pre> * @param Tx the <code>AffineTransform</code> object to be * concatenated with this <code>AffineTransform</code> object. * @see #preConcatenate * @since 1.2 */ @SuppressWarnings("fallthrough") public void concatenate(AffineTransform Tx) { double M0, M1; double T00, T01, T10, T11; double T02, T12; int mystate = state; int txstate = Tx.state; switch ((txstate << HI_SHIFT) | mystate) { /* ---------- Tx == IDENTITY cases ---------- */ case (HI_IDENTITY | APPLY_IDENTITY): case (HI_IDENTITY | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SCALE): case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SHEAR): case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE): case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): return; /* ---------- this == IDENTITY cases ---------- */ case (HI_SHEAR | HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY): m01 = Tx.m01; m10 = Tx.m10; /* NOBREAK */ case (HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY): m00 = Tx.m00; m11 = Tx.m11; /* NOBREAK */ case (HI_TRANSLATE | APPLY_IDENTITY): m02 = Tx.m02; m12 = Tx.m12; state = txstate; type = Tx.type; return; case (HI_SHEAR | HI_SCALE | APPLY_IDENTITY): m01 = Tx.m01; m10 = Tx.m10; /* NOBREAK */ case (HI_SCALE | APPLY_IDENTITY): m00 = Tx.m00; m11 = Tx.m11; state = txstate; type = Tx.type; return; case (HI_SHEAR | HI_TRANSLATE | APPLY_IDENTITY): m02 = Tx.m02; m12 = Tx.m12; /* NOBREAK */ case (HI_SHEAR | APPLY_IDENTITY): m01 = Tx.m01; m10 = Tx.m10; m00 = m11 = 0.0; state = txstate; type = Tx.type; return; /* ---------- Tx == TRANSLATE cases ---------- */ case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE): case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SHEAR): case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SCALE): case (HI_TRANSLATE | APPLY_TRANSLATE): translate(Tx.m02, Tx.m12); return; /* ---------- Tx == SCALE cases ---------- */ case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE): case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SHEAR): case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SCALE): case (HI_SCALE | APPLY_TRANSLATE): scale(Tx.m00, Tx.m11); return; /* ---------- Tx == SHEAR cases ---------- */ case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE): T01 = Tx.m01; T10 = Tx.m10; M0 = m00; m00 = m01 * T10; m01 = M0 * T01; M0 = m10; m10 = m11 * T10; m11 = M0 * T01; type = TYPE_UNKNOWN; return; case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SHEAR): m00 = m01 * Tx.m10; m01 = 0.0; m11 = m10 * Tx.m01; m10 = 0.0; state = mystate ^ (APPLY_SHEAR | APPLY_SCALE); type = TYPE_UNKNOWN; return; case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SCALE): m01 = m00 * Tx.m01; m00 = 0.0; m10 = m11 * Tx.m10; m11 = 0.0; state = mystate ^ (APPLY_SHEAR | APPLY_SCALE); type = TYPE_UNKNOWN; return; case (HI_SHEAR | APPLY_TRANSLATE): m00 = 0.0; m01 = Tx.m01; m10 = Tx.m10; m11 = 0.0; state = APPLY_TRANSLATE | APPLY_SHEAR; type = TYPE_UNKNOWN; return; } // If Tx has more than one attribute, it is not worth optimizing // all of those cases... T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02; T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12; switch (mystate) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE): state = mystate | txstate; /* NOBREAK */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M0 = m00; M1 = m01; m00 = T00 * M0 + T10 * M1; m01 = T01 * M0 + T11 * M1; m02 += T02 * M0 + T12 * M1; M0 = m10; M1 = m11; m10 = T00 * M0 + T10 * M1; m11 = T01 * M0 + T11 * M1; m12 += T02 * M0 + T12 * M1; type = TYPE_UNKNOWN; return; case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): M0 = m01; m00 = T10 * M0; m01 = T11 * M0; m02 += T12 * M0; M0 = m10; m10 = T00 * M0; m11 = T01 * M0; m12 += T02 * M0; break; case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): M0 = m00; m00 = T00 * M0; m01 = T01 * M0; m02 += T02 * M0; M0 = m11; m10 = T10 * M0; m11 = T11 * M0; m12 += T12 * M0; break; case (APPLY_TRANSLATE): m00 = T00; m01 = T01; m02 += T02; m10 = T10; m11 = T11; m12 += T12; state = txstate | APPLY_TRANSLATE; type = TYPE_UNKNOWN; return; } updateState(); } /** * Concatenates an <code>AffineTransform</code> <code>Tx</code> to * this <code>AffineTransform</code> Cx * in a less commonly used way such that <code>Tx</code> modifies the * coordinate transformation relative to the absolute pixel * space rather than relative to the existing user space. * Cx is updated to perform the combined transformation. * Transforming a point p by the updated transform Cx' is * equivalent to first transforming p by the original transform * Cx and then transforming the result by * <code>Tx</code> like this: * Cx'(p) = Tx(Cx(p)) * In matrix notation, if this transform Cx * is represented by the matrix [this] and <code>Tx</code> is * represented by the matrix [Tx] then this method does the * following: * <pre> * [this] = [Tx] x [this] * </pre> * @param Tx the <code>AffineTransform</code> object to be * concatenated with this <code>AffineTransform</code> object. * @see #concatenate * @since 1.2 */ @SuppressWarnings("fallthrough") public void preConcatenate(AffineTransform Tx) { double M0, M1; double T00, T01, T10, T11; double T02, T12; int mystate = state; int txstate = Tx.state; switch ((txstate << HI_SHIFT) | mystate) { case (HI_IDENTITY | APPLY_IDENTITY): case (HI_IDENTITY | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SCALE): case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SHEAR): case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE): case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): // Tx is IDENTITY... return; case (HI_TRANSLATE | APPLY_IDENTITY): case (HI_TRANSLATE | APPLY_SCALE): case (HI_TRANSLATE | APPLY_SHEAR): case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE): // Tx is TRANSLATE, this has no TRANSLATE m02 = Tx.m02; m12 = Tx.m12; state = mystate | APPLY_TRANSLATE; type |= TYPE_TRANSLATION; return; case (HI_TRANSLATE | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): // Tx is TRANSLATE, this has one too m02 = m02 + Tx.m02; m12 = m12 + Tx.m12; return; case (HI_SCALE | APPLY_TRANSLATE): case (HI_SCALE | APPLY_IDENTITY): // Only these two existing states need a new state state = mystate | APPLY_SCALE; /* NOBREAK */ case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE): case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SHEAR): case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SCALE | APPLY_SCALE): // Tx is SCALE, this is anything T00 = Tx.m00; T11 = Tx.m11; if ((mystate & APPLY_SHEAR) != 0) { m01 = m01 * T00; m10 = m10 * T11; if ((mystate & APPLY_SCALE) != 0) { m00 = m00 * T00; m11 = m11 * T11; } } else { m00 = m00 * T00; m11 = m11 * T11; } if ((mystate & APPLY_TRANSLATE) != 0) { m02 = m02 * T00; m12 = m12 * T11; } type = TYPE_UNKNOWN; return; case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SHEAR): mystate = mystate | APPLY_SCALE; /* NOBREAK */ case (HI_SHEAR | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_IDENTITY): case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SCALE): state = mystate ^ APPLY_SHEAR; /* NOBREAK */ case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE): // Tx is SHEAR, this is anything T01 = Tx.m01; T10 = Tx.m10; M0 = m00; m00 = m10 * T01; m10 = M0 * T10; M0 = m01; m01 = m11 * T01; m11 = M0 * T10; M0 = m02; m02 = m12 * T01; m12 = M0 * T10; type = TYPE_UNKNOWN; return; } // If Tx has more than one attribute, it is not worth optimizing // all of those cases... T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02; T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12; switch (mystate) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M0 = m02; M1 = m12; T02 += M0 * T00 + M1 * T01; T12 += M0 * T10 + M1 * T11; /* NOBREAK */ case (APPLY_SHEAR | APPLY_SCALE): m02 = T02; m12 = T12; M0 = m00; M1 = m10; m00 = M0 * T00 + M1 * T01; m10 = M0 * T10 + M1 * T11; M0 = m01; M1 = m11; m01 = M0 * T00 + M1 * T01; m11 = M0 * T10 + M1 * T11; break; case (APPLY_SHEAR | APPLY_TRANSLATE): M0 = m02; M1 = m12; T02 += M0 * T00 + M1 * T01; T12 += M0 * T10 + M1 * T11; /* NOBREAK */ case (APPLY_SHEAR): m02 = T02; m12 = T12; M0 = m10; m00 = M0 * T01; m10 = M0 * T11; M0 = m01; m01 = M0 * T00; m11 = M0 * T10; break; case (APPLY_SCALE | APPLY_TRANSLATE): M0 = m02; M1 = m12; T02 += M0 * T00 + M1 * T01; T12 += M0 * T10 + M1 * T11; /* NOBREAK */ case (APPLY_SCALE): m02 = T02; m12 = T12; M0 = m00; m00 = M0 * T00; m10 = M0 * T10; M0 = m11; m01 = M0 * T01; m11 = M0 * T11; break; case (APPLY_TRANSLATE): M0 = m02; M1 = m12; T02 += M0 * T00 + M1 * T01; T12 += M0 * T10 + M1 * T11; /* NOBREAK */ case (APPLY_IDENTITY): m02 = T02; m12 = T12; m00 = T00; m10 = T10; m01 = T01; m11 = T11; state = mystate | txstate; type = TYPE_UNKNOWN; return; } updateState(); } /** * Returns an <code>AffineTransform</code> object representing the * inverse transformation. * The inverse transform Tx' of this transform Tx * maps coordinates transformed by Tx back * to their original coordinates. * In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)). * <p> * If this transform maps all coordinates onto a point or a line * then it will not have an inverse, since coordinates that do * not lie on the destination point or line will not have an inverse * mapping. * The <code>getDeterminant</code> method can be used to determine if this * transform has no inverse, in which case an exception will be * thrown if the <code>createInverse</code> method is called. * @return a new <code>AffineTransform</code> object representing the * inverse transformation. * @see #getDeterminant * @exception NoninvertibleTransformException * if the matrix cannot be inverted. * @since 1.2 */ public AffineTransform createInverse() throws NoninvertibleTransformException { double det; switch (state) { default: stateError(); /* NOTREACHED */ return null; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): det = m00 * m11 - m01 * m10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } return new AffineTransform( m11 / det, -m10 / det, -m01 / det, m00 / det, (m01 * m12 - m11 * m02) / det, (m10 * m02 - m00 * m12) / det, (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE)); case (APPLY_SHEAR | APPLY_SCALE): det = m00 * m11 - m01 * m10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } return new AffineTransform( m11 / det, -m10 / det, -m01 / det, m00 / det, 0.0, 0.0, (APPLY_SHEAR | APPLY_SCALE)); case (APPLY_SHEAR | APPLY_TRANSLATE): if (m01 == 0.0 || m10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } return new AffineTransform( 0.0, 1.0 / m01, 1.0 / m10, 0.0, -m12 / m10, -m02 / m01, (APPLY_SHEAR | APPLY_TRANSLATE)); case (APPLY_SHEAR): if (m01 == 0.0 || m10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } return new AffineTransform(0.0, 1.0 / m01, 1.0 / m10, 0.0, 0.0, 0.0, (APPLY_SHEAR)); case (APPLY_SCALE | APPLY_TRANSLATE): if (m00 == 0.0 || m11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } return new AffineTransform( 1.0 / m00, 0.0, 0.0, 1.0 / m11, -m02 / m00, -m12 / m11, (APPLY_SCALE | APPLY_TRANSLATE)); case (APPLY_SCALE): if (m00 == 0.0 || m11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } return new AffineTransform(1.0 / m00, 0.0, 0.0, 1.0 / m11, 0.0, 0.0, (APPLY_SCALE)); case (APPLY_TRANSLATE): return new AffineTransform( 1.0, 0.0, 0.0, 1.0, -m02, -m12, (APPLY_TRANSLATE)); case (APPLY_IDENTITY): return new AffineTransform(); } /* NOTREACHED */ } /** * Sets this transform to the inverse of itself. * The inverse transform Tx' of this transform Tx * maps coordinates transformed by Tx back * to their original coordinates. * In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)). * <p> * If this transform maps all coordinates onto a point or a line * then it will not have an inverse, since coordinates that do * not lie on the destination point or line will not have an inverse * mapping. * The <code>getDeterminant</code> method can be used to determine if this * transform has no inverse, in which case an exception will be * thrown if the <code>invert</code> method is called. * @see #getDeterminant * @exception NoninvertibleTransformException * if the matrix cannot be inverted. * @since 1.6 */ public void invert() throws NoninvertibleTransformException { double M00, M01, M02; double M10, M11, M12; double det; switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; det = M00 * M11 - M01 * M10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } m00 = M11 / det; m10 = -M10 / det; m01 = -M01 / det; m11 = M00 / det; m02 = (M01 * M12 - M11 * M02) / det; m12 = (M10 * M02 - M00 * M12) / det; break; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; det = M00 * M11 - M01 * M10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } m00 = M11 / det; m10 = -M10 / det; m01 = -M01 / det; m11 = M00 / det; // m02 = 0.0; // m12 = 0.0; break; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; if (M01 == 0.0 || M10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } // m00 = 0.0; m10 = 1.0 / M01; m01 = 1.0 / M10; // m11 = 0.0; m02 = -M12 / M10; m12 = -M02 / M01; break; case (APPLY_SHEAR): M01 = m01; M10 = m10; if (M01 == 0.0 || M10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } // m00 = 0.0; m10 = 1.0 / M01; m01 = 1.0 / M10; // m11 = 0.0; // m02 = 0.0; // m12 = 0.0; break; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; if (M00 == 0.0 || M11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } m00 = 1.0 / M00; // m10 = 0.0; // m01 = 0.0; m11 = 1.0 / M11; m02 = -M02 / M00; m12 = -M12 / M11; break; case (APPLY_SCALE): M00 = m00; M11 = m11; if (M00 == 0.0 || M11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } m00 = 1.0 / M00; // m10 = 0.0; // m01 = 0.0; m11 = 1.0 / M11; // m02 = 0.0; // m12 = 0.0; break; case (APPLY_TRANSLATE): // m00 = 1.0; // m10 = 0.0; // m01 = 0.0; // m11 = 1.0; m02 = -m02; m12 = -m12; break; case (APPLY_IDENTITY): // m00 = 1.0; // m10 = 0.0; // m01 = 0.0; // m11 = 1.0; // m02 = 0.0; // m12 = 0.0; break; } } /** * Transforms the specified <code>ptSrc</code> and stores the result * in <code>ptDst</code>. * If <code>ptDst</code> is <code>null</code>, a new {@link Point2D} * object is allocated and then the result of the transformation is * stored in this object. * In either case, <code>ptDst</code>, which contains the * transformed point, is returned for convenience. * If <code>ptSrc</code> and <code>ptDst</code> are the same * object, the input point is correctly overwritten with * the transformed point. * @param ptSrc the specified <code>Point2D</code> to be transformed * @param ptDst the specified <code>Point2D</code> that stores the * result of transforming <code>ptSrc</code> * @return the <code>ptDst</code> after transforming * <code>ptSrc</code> and storing the result in <code>ptDst</code>. * @since 1.2 */ public Point2D transform(Point2D ptSrc, Point2D ptDst) { if (ptDst == null) { if (ptSrc instanceof Point2D.Double) { ptDst = new Point2D.Double(); } else { ptDst = new Point2D.Float(); } } // Copy source coords into local variables in case src == dst double x = ptSrc.getX(); double y = ptSrc.getY(); switch (state) { default: stateError(); /* NOTREACHED */ return null; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): ptDst.setLocation(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12); return ptDst; case (APPLY_SHEAR | APPLY_SCALE): ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11); return ptDst; case (APPLY_SHEAR | APPLY_TRANSLATE): ptDst.setLocation(y * m01 + m02, x * m10 + m12); return ptDst; case (APPLY_SHEAR): ptDst.setLocation(y * m01, x * m10); return ptDst; case (APPLY_SCALE | APPLY_TRANSLATE): ptDst.setLocation(x * m00 + m02, y * m11 + m12); return ptDst; case (APPLY_SCALE): ptDst.setLocation(x * m00, y * m11); return ptDst; case (APPLY_TRANSLATE): ptDst.setLocation(x + m02, y + m12); return ptDst; case (APPLY_IDENTITY): ptDst.setLocation(x, y); return ptDst; } /* NOTREACHED */ } /** * Transforms an array of point objects by this transform. * If any element of the <code>ptDst</code> array is * <code>null</code>, a new <code>Point2D</code> object is allocated * and stored into that element before storing the results of the * transformation. * <p> * Note that this method does not take any precautions to * avoid problems caused by storing results into <code>Point2D</code> * objects that will be used as the source for calculations * further down the source array. * This method does guarantee that if a specified <code>Point2D</code> * object is both the source and destination for the same single point * transform operation then the results will not be stored until * the calculations are complete to avoid storing the results on * top of the operands. * If, however, the destination <code>Point2D</code> object for one * operation is the same object as the source <code>Point2D</code> * object for another operation further down the source array then * the original coordinates in that point are overwritten before * they can be converted. * @param ptSrc the array containing the source point objects * @param ptDst the array into which the transform point objects are * returned * @param srcOff the offset to the first point object to be * transformed in the source array * @param dstOff the offset to the location of the first * transformed point object that is stored in the destination array * @param numPts the number of point objects to be transformed * @since 1.2 */ public void transform(Point2D[] ptSrc, int srcOff, Point2D[] ptDst, int dstOff, int numPts) { int state = this.state; while (--numPts >= 0) { // Copy source coords into local variables in case src == dst Point2D src = ptSrc[srcOff++]; double x = src.getX(); double y = src.getY(); Point2D dst = ptDst[dstOff++]; if (dst == null) { if (src instanceof Point2D.Double) { dst = new Point2D.Double(); } else { dst = new Point2D.Float(); } ptDst[dstOff - 1] = dst; } switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): dst.setLocation(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12); break; case (APPLY_SHEAR | APPLY_SCALE): dst.setLocation(x * m00 + y * m01, x * m10 + y * m11); break; case (APPLY_SHEAR | APPLY_TRANSLATE): dst.setLocation(y * m01 + m02, x * m10 + m12); break; case (APPLY_SHEAR): dst.setLocation(y * m01, x * m10); break; case (APPLY_SCALE | APPLY_TRANSLATE): dst.setLocation(x * m00 + m02, y * m11 + m12); break; case (APPLY_SCALE): dst.setLocation(x * m00, y * m11); break; case (APPLY_TRANSLATE): dst.setLocation(x + m02, y + m12); break; case (APPLY_IDENTITY): dst.setLocation(x, y); break; } } /* NOTREACHED */ } /** * Transforms an array of floating point coordinates by this transform. * The two coordinate array sections can be exactly the same or * can be overlapping sections of the same array without affecting the * validity of the results. * This method ensures that no source coordinates are overwritten by a * previous operation before they can be transformed. * The coordinates are stored in the arrays starting at the specified * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source point coordinates. * Each point is stored as a pair of x, y coordinates. * @param dstPts the array into which the transformed point coordinates * are returned. Each point is stored as a pair of x, y * coordinates. * @param srcOff the offset to the first point to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed point that is stored in the destination array * @param numPts the number of points to be transformed * @since 1.2 */ public void transform(float[] srcPts, int srcOff, float[] dstPts, int dstOff, int numPts) { double M00, M01, M02, M10, M11, M12; // For caching if (dstPts == srcPts && dstOff > srcOff && dstOff < srcOff + numPts * 2) { // If the arrays overlap partially with the destination higher // than the source and we transform the coordinates normally // we would overwrite some of the later source coordinates // with results of previous transformations. // To get around this we use arraycopy to copy the points // to their final destination with correct overwrite // handling and then transform them in place in the new // safer location. System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); // srcPts = dstPts; // They are known to be equal. srcOff = dstOff; } switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02); dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12); } return; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M00 * x + M01 * y); dstPts[dstOff++] = (float) (M10 * x + M11 * y); } return; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (M10 * x + M12); } return; case (APPLY_SHEAR): M01 = m01; M10 = m10; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]); dstPts[dstOff++] = (float) (M10 * x); } return; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12); } return; case (APPLY_SCALE): M00 = m00; M11 = m11; while (--numPts >= 0) { dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]); dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]); } return; case (APPLY_TRANSLATE): M02 = m02; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12); } return; case (APPLY_IDENTITY): if (srcPts != dstPts || srcOff != dstOff) { System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); } return; } /* NOTREACHED */ } /** * Transforms an array of double precision coordinates by this transform. * The two coordinate array sections can be exactly the same or * can be overlapping sections of the same array without affecting the * validity of the results. * This method ensures that no source coordinates are * overwritten by a previous operation before they can be transformed. * The coordinates are stored in the arrays starting at the indicated * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source point coordinates. * Each point is stored as a pair of x, y coordinates. * @param dstPts the array into which the transformed point * coordinates are returned. Each point is stored as a pair of * x, y coordinates. * @param srcOff the offset to the first point to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed point that is stored in the destination array * @param numPts the number of point objects to be transformed * @since 1.2 */ public void transform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts) { double M00, M01, M02, M10, M11, M12; // For caching if (dstPts == srcPts && dstOff > srcOff && dstOff < srcOff + numPts * 2) { // If the arrays overlap partially with the destination higher // than the source and we transform the coordinates normally // we would overwrite some of the later source coordinates // with results of previous transformations. // To get around this we use arraycopy to copy the points // to their final destination with correct overwrite // handling and then transform them in place in the new // safer location. System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); // srcPts = dstPts; // They are known to be equal. srcOff = dstOff; } switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = M00 * x + M01 * y + M02; dstPts[dstOff++] = M10 * x + M11 * y + M12; } return; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = M00 * x + M01 * y; dstPts[dstOff++] = M10 * x + M11 * y; } return; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02; dstPts[dstOff++] = M10 * x + M12; } return; case (APPLY_SHEAR): M01 = m01; M10 = m10; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = M01 * srcPts[srcOff++]; dstPts[dstOff++] = M10 * x; } return; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02; dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12; } return; case (APPLY_SCALE): M00 = m00; M11 = m11; while (--numPts >= 0) { dstPts[dstOff++] = M00 * srcPts[srcOff++]; dstPts[dstOff++] = M11 * srcPts[srcOff++]; } return; case (APPLY_TRANSLATE): M02 = m02; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++] + M02; dstPts[dstOff++] = srcPts[srcOff++] + M12; } return; case (APPLY_IDENTITY): if (srcPts != dstPts || srcOff != dstOff) { System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); } return; } /* NOTREACHED */ } /** * Transforms an array of floating point coordinates by this transform * and stores the results into an array of doubles. * The coordinates are stored in the arrays starting at the specified * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source point coordinates. * Each point is stored as a pair of x, y coordinates. * @param dstPts the array into which the transformed point coordinates * are returned. Each point is stored as a pair of x, y * coordinates. * @param srcOff the offset to the first point to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed point that is stored in the destination array * @param numPts the number of points to be transformed * @since 1.2 */ public void transform(float[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts) { double M00, M01, M02, M10, M11, M12; // For caching switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = M00 * x + M01 * y + M02; dstPts[dstOff++] = M10 * x + M11 * y + M12; } return; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = M00 * x + M01 * y; dstPts[dstOff++] = M10 * x + M11 * y; } return; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02; dstPts[dstOff++] = M10 * x + M12; } return; case (APPLY_SHEAR): M01 = m01; M10 = m10; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = M01 * srcPts[srcOff++]; dstPts[dstOff++] = M10 * x; } return; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02; dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12; } return; case (APPLY_SCALE): M00 = m00; M11 = m11; while (--numPts >= 0) { dstPts[dstOff++] = M00 * srcPts[srcOff++]; dstPts[dstOff++] = M11 * srcPts[srcOff++]; } return; case (APPLY_TRANSLATE): M02 = m02; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++] + M02; dstPts[dstOff++] = srcPts[srcOff++] + M12; } return; case (APPLY_IDENTITY): while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++]; dstPts[dstOff++] = srcPts[srcOff++]; } return; } /* NOTREACHED */ } /** * Transforms an array of double precision coordinates by this transform * and stores the results into an array of floats. * The coordinates are stored in the arrays starting at the specified * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source point coordinates. * Each point is stored as a pair of x, y coordinates. * @param dstPts the array into which the transformed point * coordinates are returned. Each point is stored as a pair of * x, y coordinates. * @param srcOff the offset to the first point to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed point that is stored in the destination array * @param numPts the number of point objects to be transformed * @since 1.2 */ public void transform(double[] srcPts, int srcOff, float[] dstPts, int dstOff, int numPts) { double M00, M01, M02, M10, M11, M12; // For caching switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02); dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12); } return; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M00 * x + M01 * y); dstPts[dstOff++] = (float) (M10 * x + M11 * y); } return; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (M10 * x + M12); } return; case (APPLY_SHEAR): M01 = m01; M10 = m10; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]); dstPts[dstOff++] = (float) (M10 * x); } return; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12); } return; case (APPLY_SCALE): M00 = m00; M11 = m11; while (--numPts >= 0) { dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]); dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]); } return; case (APPLY_TRANSLATE): M02 = m02; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02); dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12); } return; case (APPLY_IDENTITY): while (--numPts >= 0) { dstPts[dstOff++] = (float) (srcPts[srcOff++]); dstPts[dstOff++] = (float) (srcPts[srcOff++]); } return; } /* NOTREACHED */ } /** * Inverse transforms the specified <code>ptSrc</code> and stores the * result in <code>ptDst</code>. * If <code>ptDst</code> is <code>null</code>, a new * <code>Point2D</code> object is allocated and then the result of the * transform is stored in this object. * In either case, <code>ptDst</code>, which contains the transformed * point, is returned for convenience. * If <code>ptSrc</code> and <code>ptDst</code> are the same * object, the input point is correctly overwritten with the * transformed point. * @param ptSrc the point to be inverse transformed * @param ptDst the resulting transformed point * @return <code>ptDst</code>, which contains the result of the * inverse transform. * @exception NoninvertibleTransformException if the matrix cannot be * inverted. * @since 1.2 */ @SuppressWarnings("fallthrough") public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst) throws NoninvertibleTransformException { if (ptDst == null) { if (ptSrc instanceof Point2D.Double) { ptDst = new Point2D.Double(); } else { ptDst = new Point2D.Float(); } } // Copy source coords into local variables in case src == dst double x = ptSrc.getX(); double y = ptSrc.getY(); switch (state) { default: stateError(); /* NOTREACHED */ case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): x -= m02; y -= m12; /* NOBREAK */ case (APPLY_SHEAR | APPLY_SCALE): double det = m00 * m11 - m01 * m10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } ptDst.setLocation((x * m11 - y * m01) / det, (y * m00 - x * m10) / det); return ptDst; case (APPLY_SHEAR | APPLY_TRANSLATE): x -= m02; y -= m12; /* NOBREAK */ case (APPLY_SHEAR): if (m01 == 0.0 || m10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } ptDst.setLocation(y / m10, x / m01); return ptDst; case (APPLY_SCALE | APPLY_TRANSLATE): x -= m02; y -= m12; /* NOBREAK */ case (APPLY_SCALE): if (m00 == 0.0 || m11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } ptDst.setLocation(x / m00, y / m11); return ptDst; case (APPLY_TRANSLATE): ptDst.setLocation(x - m02, y - m12); return ptDst; case (APPLY_IDENTITY): ptDst.setLocation(x, y); return ptDst; } /* NOTREACHED */ } /** * Inverse transforms an array of double precision coordinates by * this transform. * The two coordinate array sections can be exactly the same or * can be overlapping sections of the same array without affecting the * validity of the results. * This method ensures that no source coordinates are * overwritten by a previous operation before they can be transformed. * The coordinates are stored in the arrays starting at the specified * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source point coordinates. * Each point is stored as a pair of x, y coordinates. * @param dstPts the array into which the transformed point * coordinates are returned. Each point is stored as a pair of * x, y coordinates. * @param srcOff the offset to the first point to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed point that is stored in the destination array * @param numPts the number of point objects to be transformed * @exception NoninvertibleTransformException if the matrix cannot be * inverted. * @since 1.2 */ public void inverseTransform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts) throws NoninvertibleTransformException { double M00, M01, M02, M10, M11, M12; // For caching double det; if (dstPts == srcPts && dstOff > srcOff && dstOff < srcOff + numPts * 2) { // If the arrays overlap partially with the destination higher // than the source and we transform the coordinates normally // we would overwrite some of the later source coordinates // with results of previous transformations. // To get around this we use arraycopy to copy the points // to their final destination with correct overwrite // handling and then transform them in place in the new // safer location. System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); // srcPts = dstPts; // They are known to be equal. srcOff = dstOff; } switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M01 = m01; M02 = m02; M10 = m10; M11 = m11; M12 = m12; det = M00 * M11 - M01 * M10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } while (--numPts >= 0) { double x = srcPts[srcOff++] - M02; double y = srcPts[srcOff++] - M12; dstPts[dstOff++] = (x * M11 - y * M01) / det; dstPts[dstOff++] = (y * M00 - x * M10) / det; } return; case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; det = M00 * M11 - M01 * M10; if (Math.abs(det) <= Double.MIN_VALUE) { throw new NoninvertibleTransformException("Determinant is "+ det); } while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = (x * M11 - y * M01) / det; dstPts[dstOff++] = (y * M00 - x * M10) / det; } return; case (APPLY_SHEAR | APPLY_TRANSLATE): M01 = m01; M02 = m02; M10 = m10; M12 = m12; if (M01 == 0.0 || M10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } while (--numPts >= 0) { double x = srcPts[srcOff++] - M02; dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M10; dstPts[dstOff++] = x / M01; } return; case (APPLY_SHEAR): M01 = m01; M10 = m10; if (M01 == 0.0 || M10 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = srcPts[srcOff++] / M10; dstPts[dstOff++] = x / M01; } return; case (APPLY_SCALE | APPLY_TRANSLATE): M00 = m00; M02 = m02; M11 = m11; M12 = m12; if (M00 == 0.0 || M11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } while (--numPts >= 0) { dstPts[dstOff++] = (srcPts[srcOff++] - M02) / M00; dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M11; } return; case (APPLY_SCALE): M00 = m00; M11 = m11; if (M00 == 0.0 || M11 == 0.0) { throw new NoninvertibleTransformException("Determinant is 0"); } while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++] / M00; dstPts[dstOff++] = srcPts[srcOff++] / M11; } return; case (APPLY_TRANSLATE): M02 = m02; M12 = m12; while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++] - M02; dstPts[dstOff++] = srcPts[srcOff++] - M12; } return; case (APPLY_IDENTITY): if (srcPts != dstPts || srcOff != dstOff) { System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); } return; } /* NOTREACHED */ } /** * Transforms the relative distance vector specified by * <code>ptSrc</code> and stores the result in <code>ptDst</code>. * A relative distance vector is transformed without applying the * translation components of the affine transformation matrix * using the following equations: * <pre> * [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ] * [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ] * [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ] * </pre> * If <code>ptDst</code> is <code>null</code>, a new * <code>Point2D</code> object is allocated and then the result of the * transform is stored in this object. * In either case, <code>ptDst</code>, which contains the * transformed point, is returned for convenience. * If <code>ptSrc</code> and <code>ptDst</code> are the same object, * the input point is correctly overwritten with the transformed * point. * @param ptSrc the distance vector to be delta transformed * @param ptDst the resulting transformed distance vector * @return <code>ptDst</code>, which contains the result of the * transformation. * @since 1.2 */ public Point2D deltaTransform(Point2D ptSrc, Point2D ptDst) { if (ptDst == null) { if (ptSrc instanceof Point2D.Double) { ptDst = new Point2D.Double(); } else { ptDst = new Point2D.Float(); } } // Copy source coords into local variables in case src == dst double x = ptSrc.getX(); double y = ptSrc.getY(); switch (state) { default: stateError(); /* NOTREACHED */ return null; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SHEAR | APPLY_SCALE): ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11); return ptDst; case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): ptDst.setLocation(y * m01, x * m10); return ptDst; case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): ptDst.setLocation(x * m00, y * m11); return ptDst; case (APPLY_TRANSLATE): case (APPLY_IDENTITY): ptDst.setLocation(x, y); return ptDst; } /* NOTREACHED */ } /** * Transforms an array of relative distance vectors by this * transform. * A relative distance vector is transformed without applying the * translation components of the affine transformation matrix * using the following equations: * <pre> * [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ] * [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ] * [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ] * </pre> * The two coordinate array sections can be exactly the same or * can be overlapping sections of the same array without affecting the * validity of the results. * This method ensures that no source coordinates are * overwritten by a previous operation before they can be transformed. * The coordinates are stored in the arrays starting at the indicated * offset in the order <code>[x0, y0, x1, y1, ..., xn, yn]</code>. * @param srcPts the array containing the source distance vectors. * Each vector is stored as a pair of relative x, y coordinates. * @param dstPts the array into which the transformed distance vectors * are returned. Each vector is stored as a pair of relative * x, y coordinates. * @param srcOff the offset to the first vector to be transformed * in the source array * @param dstOff the offset to the location of the first * transformed vector that is stored in the destination array * @param numPts the number of vector coordinate pairs to be * transformed * @since 1.2 */ public void deltaTransform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts) { double M00, M01, M10, M11; // For caching if (dstPts == srcPts && dstOff > srcOff && dstOff < srcOff + numPts * 2) { // If the arrays overlap partially with the destination higher // than the source and we transform the coordinates normally // we would overwrite some of the later source coordinates // with results of previous transformations. // To get around this we use arraycopy to copy the points // to their final destination with correct overwrite // handling and then transform them in place in the new // safer location. System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); // srcPts = dstPts; // They are known to be equal. srcOff = dstOff; } switch (state) { default: stateError(); /* NOTREACHED */ return; case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SHEAR | APPLY_SCALE): M00 = m00; M01 = m01; M10 = m10; M11 = m11; while (--numPts >= 0) { double x = srcPts[srcOff++]; double y = srcPts[srcOff++]; dstPts[dstOff++] = x * M00 + y * M01; dstPts[dstOff++] = x * M10 + y * M11; } return; case (APPLY_SHEAR | APPLY_TRANSLATE): case (APPLY_SHEAR): M01 = m01; M10 = m10; while (--numPts >= 0) { double x = srcPts[srcOff++]; dstPts[dstOff++] = srcPts[srcOff++] * M01; dstPts[dstOff++] = x * M10; } return; case (APPLY_SCALE | APPLY_TRANSLATE): case (APPLY_SCALE): M00 = m00; M11 = m11; while (--numPts >= 0) { dstPts[dstOff++] = srcPts[srcOff++] * M00; dstPts[dstOff++] = srcPts[srcOff++] * M11; } return; case (APPLY_TRANSLATE): case (APPLY_IDENTITY): if (srcPts != dstPts || srcOff != dstOff) { System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2); } return; } /* NOTREACHED */ } /** * Returns a new {@link Shape} object defined by the geometry of the * specified <code>Shape</code> after it has been transformed by * this transform. * @param pSrc the specified <code>Shape</code> object to be * transformed by this transform. * @return a new <code>Shape</code> object that defines the geometry * of the transformed <code>Shape</code>, or null if {@code pSrc} is null. * @since 1.2 */ public Shape createTransformedShape(Shape pSrc) { if (pSrc == null) { return null; } return new Path2D.Double(pSrc, this); } // Round values to sane precision for printing // Note that Math.sin(Math.PI) has an error of about 10^-16 private static double _matround(double matval) { return Math.rint(matval * 1E15) / 1E15; } /** * Returns a <code>String</code> that represents the value of this * {@link Object}. * @return a <code>String</code> representing the value of this * <code>Object</code>. * @since 1.2 */ public String toString() { return ("AffineTransform[[" + _matround(m00) + ", " + _matround(m01) + ", " + _matround(m02) + "], [" + _matround(m10) + ", " + _matround(m11) + ", " + _matround(m12) + "]]"); } /** * Returns <code>true</code> if this <code>AffineTransform</code> is * an identity transform. * @return <code>true</code> if this <code>AffineTransform</code> is * an identity transform; <code>false</code> otherwise. * @since 1.2 */ public boolean isIdentity() { return (state == APPLY_IDENTITY || (getType() == TYPE_IDENTITY)); } /** * Returns a copy of this <code>AffineTransform</code> object. * @return an <code>Object</code> that is a copy of this * <code>AffineTransform</code> object. * @since 1.2 */ public Object clone() { try { return super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * Returns the hashcode for this transform. * @return a hash code for this transform. * @since 1.2 */ public int hashCode() { long bits = Double.doubleToLongBits(m00); bits = bits * 31 + Double.doubleToLongBits(m01); bits = bits * 31 + Double.doubleToLongBits(m02); bits = bits * 31 + Double.doubleToLongBits(m10); bits = bits * 31 + Double.doubleToLongBits(m11); bits = bits * 31 + Double.doubleToLongBits(m12); return (((int) bits) ^ ((int) (bits >> 32))); } /** * Returns <code>true</code> if this <code>AffineTransform</code> * represents the same affine coordinate transform as the specified * argument. * @param obj the <code>Object</code> to test for equality with this * <code>AffineTransform</code> * @return <code>true</code> if <code>obj</code> equals this * <code>AffineTransform</code> object; <code>false</code> otherwise. * @since 1.2 */ public boolean equals(Object obj) { if (!(obj instanceof AffineTransform)) { return false; } AffineTransform a = (AffineTransform)obj; return ((m00 == a.m00) && (m01 == a.m01) && (m02 == a.m02) && (m10 == a.m10) && (m11 == a.m11) && (m12 == a.m12)); } /* Serialization support. A readObject method is neccessary because * the state field is part of the implementation of this particular * AffineTransform and not part of the public specification. The * state variable's value needs to be recalculated on the fly by the * readObject method as it is in the 6-argument matrix constructor. */ /* * JDK 1.2 serialVersionUID */ private static final long serialVersionUID = 1330973210523860834L; private void writeObject(java.io.ObjectOutputStream s) throws java.lang.ClassNotFoundException, java.io.IOException { s.defaultWriteObject(); } private void readObject(java.io.ObjectInputStream s) throws java.lang.ClassNotFoundException, java.io.IOException { s.defaultReadObject(); updateState(); } }
⏎ java/awt/geom/AffineTransform.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2023-08-23, 277636👍, 4💬
Popular Posts:
What Is commons-lang3-3.1.jar? commons-lang3-3.1.jar is the JAR file for Apache Commons Lang 3.1, wh...
Rhino JavaScript Java Library is an open-source implementation of JavaScript written entirely in Jav...
iText is an ideal library for developers looking to enhance web- and other applications with dynamic...
What is the sax\Counter.java provided in the Apache Xerces package? I have Apache Xerces 2.11.0 inst...
What Is jsse.jar (JDK 6) Java Secure Socket Extension? jsse.jar, Java Secure Socket Extension, is Ja...