Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (102)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (322)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries.
JRE (Java Runtime) 8 is the runtime environment included in JDK 8.
JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/image/AreaAveragingScaleFilter.java
/* * Copyright (c) 1996, 2002, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt.image; import java.awt.image.ImageConsumer; import java.awt.image.ColorModel; import java.util.Hashtable; import java.awt.Rectangle; /** * An ImageFilter class for scaling images using a simple area averaging * algorithm that produces smoother results than the nearest neighbor * algorithm. * <p>This class extends the basic ImageFilter Class to scale an existing * image and provide a source for a new image containing the resampled * image. The pixels in the source image are blended to produce pixels * for an image of the specified size. The blending process is analogous * to scaling up the source image to a multiple of the destination size * using pixel replication and then scaling it back down to the destination * size by simply averaging all the pixels in the supersized image that * fall within a given pixel of the destination image. If the data from * the source is not delivered in TopDownLeftRight order then the filter * will back off to a simple pixel replication behavior and utilize the * requestTopDownLeftRightResend() method to refilter the pixels in a * better way at the end. * <p>It is meant to be used in conjunction with a FilteredImageSource * object to produce scaled versions of existing images. Due to * implementation dependencies, there may be differences in pixel values * of an image filtered on different platforms. * * @see FilteredImageSource * @see ReplicateScaleFilter * @see ImageFilter * * @author Jim Graham */ public class AreaAveragingScaleFilter extends ReplicateScaleFilter { private static final ColorModel rgbmodel = ColorModel.getRGBdefault(); private static final int neededHints = (TOPDOWNLEFTRIGHT | COMPLETESCANLINES); private boolean passthrough; private float reds[], greens[], blues[], alphas[]; private int savedy; private int savedyrem; /** * Constructs an AreaAveragingScaleFilter that scales the pixels from * its source Image as specified by the width and height parameters. * @param width the target width to scale the image * @param height the target height to scale the image */ public AreaAveragingScaleFilter(int width, int height) { super(width, height); } /** * Detect if the data is being delivered with the necessary hints * to allow the averaging algorithm to do its work. * <p> * Note: This method is intended to be called by the * <code>ImageProducer</code> of the <code>Image</code> whose * pixels are being filtered. Developers using * this class to filter pixels from an image should avoid calling * this method directly since that operation could interfere * with the filtering operation. * @see ImageConsumer#setHints */ public void setHints(int hints) { passthrough = ((hints & neededHints) != neededHints); super.setHints(hints); } private void makeAccumBuffers() { reds = new float[destWidth]; greens = new float[destWidth]; blues = new float[destWidth]; alphas = new float[destWidth]; } private int[] calcRow() { float origmult = ((float) srcWidth) * srcHeight; if (outpixbuf == null || !(outpixbuf instanceof int[])) { outpixbuf = new int[destWidth]; } int[] outpix = (int[]) outpixbuf; for (int x = 0; x < destWidth; x++) { float mult = origmult; int a = Math.round(alphas[x] / mult); if (a <= 0) { a = 0; } else if (a >= 255) { a = 255; } else { // un-premultiply the components (by modifying mult here, we // are effectively doing the divide by mult and divide by // alpha in the same step) mult = alphas[x] / 255; } int r = Math.round(reds[x] / mult); int g = Math.round(greens[x] / mult); int b = Math.round(blues[x] / mult); if (r < 0) {r = 0;} else if (r > 255) {r = 255;} if (g < 0) {g = 0;} else if (g > 255) {g = 255;} if (b < 0) {b = 0;} else if (b > 255) {b = 255;} outpix[x] = (a << 24 | r << 16 | g << 8 | b); } return outpix; } private void accumPixels(int x, int y, int w, int h, ColorModel model, Object pixels, int off, int scansize) { if (reds == null) { makeAccumBuffers(); } int sy = y; int syrem = destHeight; int dy, dyrem; if (sy == 0) { dy = 0; dyrem = 0; } else { dy = savedy; dyrem = savedyrem; } while (sy < y + h) { int amty; if (dyrem == 0) { for (int i = 0; i < destWidth; i++) { alphas[i] = reds[i] = greens[i] = blues[i] = 0f; } dyrem = srcHeight; } if (syrem < dyrem) { amty = syrem; } else { amty = dyrem; } int sx = 0; int dx = 0; int sxrem = 0; int dxrem = srcWidth; float a = 0f, r = 0f, g = 0f, b = 0f; while (sx < w) { if (sxrem == 0) { sxrem = destWidth; int rgb; if (pixels instanceof byte[]) { rgb = ((byte[]) pixels)[off + sx] & 0xff; } else { rgb = ((int[]) pixels)[off + sx]; } // getRGB() always returns non-premultiplied components rgb = model.getRGB(rgb); a = rgb >>> 24; r = (rgb >> 16) & 0xff; g = (rgb >> 8) & 0xff; b = rgb & 0xff; // premultiply the components if necessary if (a != 255.0f) { float ascale = a / 255.0f; r *= ascale; g *= ascale; b *= ascale; } } int amtx; if (sxrem < dxrem) { amtx = sxrem; } else { amtx = dxrem; } float mult = ((float) amtx) * amty; alphas[dx] += mult * a; reds[dx] += mult * r; greens[dx] += mult * g; blues[dx] += mult * b; if ((sxrem -= amtx) == 0) { sx++; } if ((dxrem -= amtx) == 0) { dx++; dxrem = srcWidth; } } if ((dyrem -= amty) == 0) { int outpix[] = calcRow(); do { consumer.setPixels(0, dy, destWidth, 1, rgbmodel, outpix, 0, destWidth); dy++; } while ((syrem -= amty) >= amty && amty == srcHeight); } else { syrem -= amty; } if (syrem == 0) { syrem = destHeight; sy++; off += scansize; } } savedyrem = dyrem; savedy = dy; } /** * Combine the components for the delivered byte pixels into the * accumulation arrays and send on any averaged data for rows of * pixels that are complete. If the correct hints were not * specified in the setHints call then relay the work to our * superclass which is capable of scaling pixels regardless of * the delivery hints. * <p> * Note: This method is intended to be called by the * <code>ImageProducer</code> of the <code>Image</code> * whose pixels are being filtered. Developers using * this class to filter pixels from an image should avoid calling * this method directly since that operation could interfere * with the filtering operation. * @see ReplicateScaleFilter */ public void setPixels(int x, int y, int w, int h, ColorModel model, byte pixels[], int off, int scansize) { if (passthrough) { super.setPixels(x, y, w, h, model, pixels, off, scansize); } else { accumPixels(x, y, w, h, model, pixels, off, scansize); } } /** * Combine the components for the delivered int pixels into the * accumulation arrays and send on any averaged data for rows of * pixels that are complete. If the correct hints were not * specified in the setHints call then relay the work to our * superclass which is capable of scaling pixels regardless of * the delivery hints. * <p> * Note: This method is intended to be called by the * <code>ImageProducer</code> of the <code>Image</code> * whose pixels are being filtered. Developers using * this class to filter pixels from an image should avoid calling * this method directly since that operation could interfere * with the filtering operation. * @see ReplicateScaleFilter */ public void setPixels(int x, int y, int w, int h, ColorModel model, int pixels[], int off, int scansize) { if (passthrough) { super.setPixels(x, y, w, h, model, pixels, off, scansize); } else { accumPixels(x, y, w, h, model, pixels, off, scansize); } } }
⏎ java/awt/image/AreaAveragingScaleFilter.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2025-02-24, 342104👍, 5💬
Popular Posts:
What Is XMLBeans xbean.jar 2.6.0? XMLBeans xbean.jar 2.6.0 is the JAR file for Apache XMLBeans 2.6.0...
What Is poi-scratchpad-3.5.jar? poi-scratchpad-3.5.jar is one of the JAR files for Apache POI 3.5, w...
Apache Log4j IOStreams is a Log4j API extension that provides numerous classes from java.io that can...
What JAR files are required to run sax\Writer.java provided in the Apache Xerces package? 1 JAR file...
What Is commons-fileupload-1.3.3 .jar?commons-fileupload-1.3.3 .jaris the JAR file for Apache Common...