Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries. JRE (Java Runtime) 8 is the runtime environment included in JDK 8. JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib 63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/image/IndexColorModel.java
/* * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.awt.image; import java.awt.Transparency; import java.awt.color.ColorSpace; import java.math.BigInteger; /** * The <code>IndexColorModel</code> class is a <code>ColorModel</code> * class that works with pixel values consisting of a * single sample that is an index into a fixed colormap in the default * sRGB color space. The colormap specifies red, green, blue, and * optional alpha components corresponding to each index. All components * are represented in the colormap as 8-bit unsigned integral values. * Some constructors allow the caller to specify "holes" in the colormap * by indicating which colormap entries are valid and which represent * unusable colors via the bits set in a <code>BigInteger</code> object. * This color model is similar to an X11 PseudoColor visual. * <p> * Some constructors provide a means to specify an alpha component * for each pixel in the colormap, while others either provide no * such means or, in some cases, a flag to indicate whether the * colormap data contains alpha values. If no alpha is supplied to * the constructor, an opaque alpha component (alpha = 1.0) is * assumed for each entry. * An optional transparent pixel value can be supplied that indicates a * pixel to be made completely transparent, regardless of any alpha * component supplied or assumed for that pixel value. * Note that the color components in the colormap of an * <code>IndexColorModel</code> objects are never pre-multiplied with * the alpha components. * <p> * <a name="transparency"> * The transparency of an <code>IndexColorModel</code> object is * determined by examining the alpha components of the colors in the * colormap and choosing the most specific value after considering * the optional alpha values and any transparent index specified. * The transparency value is <code>Transparency.OPAQUE</code> * only if all valid colors in * the colormap are opaque and there is no valid transparent pixel. * If all valid colors * in the colormap are either completely opaque (alpha = 1.0) or * completely transparent (alpha = 0.0), which typically occurs when * a valid transparent pixel is specified, * the value is <code>Transparency.BITMASK</code>. * Otherwise, the value is <code>Transparency.TRANSLUCENT</code>, indicating * that some valid color has an alpha component that is * neither completely transparent nor completely opaque * (0.0 < alpha < 1.0). * </a> * * <p> * If an <code>IndexColorModel</code> object has * a transparency value of <code>Transparency.OPAQUE</code>, * then the <code>hasAlpha</code> * and <code>getNumComponents</code> methods * (both inherited from <code>ColorModel</code>) * return false and 3, respectively. * For any other transparency value, * <code>hasAlpha</code> returns true * and <code>getNumComponents</code> returns 4. * * <p> * <a name="index_values"> * The values used to index into the colormap are taken from the least * significant <em>n</em> bits of pixel representations where * <em>n</em> is based on the pixel size specified in the constructor. * For pixel sizes smaller than 8 bits, <em>n</em> is rounded up to a * power of two (3 becomes 4 and 5,6,7 become 8). * For pixel sizes between 8 and 16 bits, <em>n</em> is equal to the * pixel size. * Pixel sizes larger than 16 bits are not supported by this class. * Higher order bits beyond <em>n</em> are ignored in pixel representations. * Index values greater than or equal to the map size, but less than * 2<sup><em>n</em></sup>, are undefined and return 0 for all color and * alpha components. * </a> * <p> * For those methods that use a primitive array pixel representation of * type <code>transferType</code>, the array length is always one. * The transfer types supported are <code>DataBuffer.TYPE_BYTE</code> and * <code>DataBuffer.TYPE_USHORT</code>. A single int pixel * representation is valid for all objects of this class, since it is * always possible to represent pixel values used with this class in a * single int. Therefore, methods that use this representation do * not throw an <code>IllegalArgumentException</code> due to an invalid * pixel value. * <p> * Many of the methods in this class are final. The reason for * this is that the underlying native graphics code makes assumptions * about the layout and operation of this class and those assumptions * are reflected in the implementations of the methods here that are * marked final. You can subclass this class for other reasons, but * you cannot override or modify the behaviour of those methods. * * @see ColorModel * @see ColorSpace * @see DataBuffer * */ public class IndexColorModel extends ColorModel { private int rgb[]; private int map_size; private int pixel_mask; private int transparent_index = -1; private boolean allgrayopaque; private BigInteger validBits; private sun.awt.image.BufImgSurfaceData.ICMColorData colorData = null; private static int[] opaqueBits = {8, 8, 8}; private static int[] alphaBits = {8, 8, 8, 8}; static private native void initIDs(); static { ColorModel.loadLibraries(); initIDs(); } /** * Constructs an <code>IndexColorModel</code> from the specified * arrays of red, green, and blue components. Pixels described * by this color model all have alpha components of 255 * unnormalized (1.0 normalized), which means they * are fully opaque. All of the arrays specifying the color * components must have at least the specified number of entries. * The <code>ColorSpace</code> is the default sRGB space. * Since there is no alpha information in any of the arguments * to this constructor, the transparency value is always * <code>Transparency.OPAQUE</code>. * The transfer type is the smallest of <code>DataBuffer.TYPE_BYTE</code> * or <code>DataBuffer.TYPE_USHORT</code> that can hold a single pixel. * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param r the array of red color components * @param g the array of green color components * @param b the array of blue color components * @throws IllegalArgumentException if <code>bits</code> is less * than 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less * than 1 */ public IndexColorModel(int bits, int size, byte r[], byte g[], byte b[]) { super(bits, opaqueBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), false, false, OPAQUE, ColorModel.getDefaultTransferType(bits)); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } setRGBs(size, r, g, b, null); calculatePixelMask(); } /** * Constructs an <code>IndexColorModel</code> from the given arrays * of red, green, and blue components. Pixels described by this color * model all have alpha components of 255 unnormalized * (1.0 normalized), which means they are fully opaque, except * for the indicated pixel to be made transparent. All of the arrays * specifying the color components must have at least the specified * number of entries. * The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be <code>Transparency.OPAQUE</code> or * <code>Transparency.BITMASK</code> depending on the arguments, as * specified in the <a href="#transparency">class description</a> above. * The transfer type is the smallest of <code>DataBuffer.TYPE_BYTE</code> * or <code>DataBuffer.TYPE_USHORT</code> that can hold a * single pixel. * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param r the array of red color components * @param g the array of green color components * @param b the array of blue color components * @param trans the index of the transparent pixel * @throws IllegalArgumentException if <code>bits</code> is less than * 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less than * 1 */ public IndexColorModel(int bits, int size, byte r[], byte g[], byte b[], int trans) { super(bits, opaqueBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), false, false, OPAQUE, ColorModel.getDefaultTransferType(bits)); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } setRGBs(size, r, g, b, null); setTransparentPixel(trans); calculatePixelMask(); } /** * Constructs an <code>IndexColorModel</code> from the given * arrays of red, green, blue and alpha components. All of the * arrays specifying the components must have at least the specified * number of entries. * The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be any of <code>Transparency.OPAQUE</code>, * <code>Transparency.BITMASK</code>, * or <code>Transparency.TRANSLUCENT</code> * depending on the arguments, as specified * in the <a href="#transparency">class description</a> above. * The transfer type is the smallest of <code>DataBuffer.TYPE_BYTE</code> * or <code>DataBuffer.TYPE_USHORT</code> that can hold a single pixel. * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param r the array of red color components * @param g the array of green color components * @param b the array of blue color components * @param a the array of alpha value components * @throws IllegalArgumentException if <code>bits</code> is less * than 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less * than 1 */ public IndexColorModel(int bits, int size, byte r[], byte g[], byte b[], byte a[]) { super (bits, alphaBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), true, false, TRANSLUCENT, ColorModel.getDefaultTransferType(bits)); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } setRGBs (size, r, g, b, a); calculatePixelMask(); } /** * Constructs an <code>IndexColorModel</code> from a single * array of interleaved red, green, blue and optional alpha * components. The array must have enough values in it to * fill all of the needed component arrays of the specified * size. The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be any of <code>Transparency.OPAQUE</code>, * <code>Transparency.BITMASK</code>, * or <code>Transparency.TRANSLUCENT</code> * depending on the arguments, as specified * in the <a href="#transparency">class description</a> above. * The transfer type is the smallest of * <code>DataBuffer.TYPE_BYTE</code> or <code>DataBuffer.TYPE_USHORT</code> * that can hold a single pixel. * * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param cmap the array of color components * @param start the starting offset of the first color component * @param hasalpha indicates whether alpha values are contained in * the <code>cmap</code> array * @throws IllegalArgumentException if <code>bits</code> is less * than 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less * than 1 */ public IndexColorModel(int bits, int size, byte cmap[], int start, boolean hasalpha) { this(bits, size, cmap, start, hasalpha, -1); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } } /** * Constructs an <code>IndexColorModel</code> from a single array of * interleaved red, green, blue and optional alpha components. The * specified transparent index represents a pixel that is made * entirely transparent regardless of any alpha value specified * for it. The array must have enough values in it to fill all * of the needed component arrays of the specified size. * The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be any of <code>Transparency.OPAQUE</code>, * <code>Transparency.BITMASK</code>, * or <code>Transparency.TRANSLUCENT</code> * depending on the arguments, as specified * in the <a href="#transparency">class description</a> above. * The transfer type is the smallest of * <code>DataBuffer.TYPE_BYTE</code> or <code>DataBuffer.TYPE_USHORT</code> * that can hold a single pixel. * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param cmap the array of color components * @param start the starting offset of the first color component * @param hasalpha indicates whether alpha values are contained in * the <code>cmap</code> array * @param trans the index of the fully transparent pixel * @throws IllegalArgumentException if <code>bits</code> is less than * 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less than * 1 */ public IndexColorModel(int bits, int size, byte cmap[], int start, boolean hasalpha, int trans) { // REMIND: This assumes the ordering: RGB[A] super(bits, opaqueBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), false, false, OPAQUE, ColorModel.getDefaultTransferType(bits)); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } if (size < 1) { throw new IllegalArgumentException("Map size ("+size+ ") must be >= 1"); } map_size = size; rgb = new int[calcRealMapSize(bits, size)]; int j = start; int alpha = 0xff; boolean allgray = true; int transparency = OPAQUE; for (int i = 0; i < size; i++) { int r = cmap[j++] & 0xff; int g = cmap[j++] & 0xff; int b = cmap[j++] & 0xff; allgray = allgray && (r == g) && (g == b); if (hasalpha) { alpha = cmap[j++] & 0xff; if (alpha != 0xff) { if (alpha == 0x00) { if (transparency == OPAQUE) { transparency = BITMASK; } if (transparent_index < 0) { transparent_index = i; } } else { transparency = TRANSLUCENT; } allgray = false; } } rgb[i] = (alpha << 24) | (r << 16) | (g << 8) | b; } this.allgrayopaque = allgray; setTransparency(transparency); setTransparentPixel(trans); calculatePixelMask(); } /** * Constructs an <code>IndexColorModel</code> from an array of * ints where each int is comprised of red, green, blue, and * optional alpha components in the default RGB color model format. * The specified transparent index represents a pixel that is made * entirely transparent regardless of any alpha value specified * for it. The array must have enough values in it to fill all * of the needed component arrays of the specified size. * The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be any of <code>Transparency.OPAQUE</code>, * <code>Transparency.BITMASK</code>, * or <code>Transparency.TRANSLUCENT</code> * depending on the arguments, as specified * in the <a href="#transparency">class description</a> above. * @param bits the number of bits each pixel occupies * @param size the size of the color component arrays * @param cmap the array of color components * @param start the starting offset of the first color component * @param hasalpha indicates whether alpha values are contained in * the <code>cmap</code> array * @param trans the index of the fully transparent pixel * @param transferType the data type of the array used to represent * pixel values. The data type must be either * <code>DataBuffer.TYPE_BYTE</code> or * <code>DataBuffer.TYPE_USHORT</code>. * @throws IllegalArgumentException if <code>bits</code> is less * than 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less * than 1 * @throws IllegalArgumentException if <code>transferType</code> is not * one of <code>DataBuffer.TYPE_BYTE</code> or * <code>DataBuffer.TYPE_USHORT</code> */ public IndexColorModel(int bits, int size, int cmap[], int start, boolean hasalpha, int trans, int transferType) { // REMIND: This assumes the ordering: RGB[A] super(bits, opaqueBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), false, false, OPAQUE, transferType); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } if (size < 1) { throw new IllegalArgumentException("Map size ("+size+ ") must be >= 1"); } if ((transferType != DataBuffer.TYPE_BYTE) && (transferType != DataBuffer.TYPE_USHORT)) { throw new IllegalArgumentException("transferType must be either" + "DataBuffer.TYPE_BYTE or DataBuffer.TYPE_USHORT"); } setRGBs(size, cmap, start, hasalpha); setTransparentPixel(trans); calculatePixelMask(); } /** * Constructs an <code>IndexColorModel</code> from an * <code>int</code> array where each <code>int</code> is * comprised of red, green, blue, and alpha * components in the default RGB color model format. * The array must have enough values in it to fill all * of the needed component arrays of the specified size. * The <code>ColorSpace</code> is the default sRGB space. * The transparency value may be any of <code>Transparency.OPAQUE</code>, * <code>Transparency.BITMASK</code>, * or <code>Transparency.TRANSLUCENT</code> * depending on the arguments, as specified * in the <a href="#transparency">class description</a> above. * The transfer type must be one of <code>DataBuffer.TYPE_BYTE</code> * <code>DataBuffer.TYPE_USHORT</code>. * The <code>BigInteger</code> object specifies the valid/invalid pixels * in the <code>cmap</code> array. A pixel is valid if the * <code>BigInteger</code> value at that index is set, and is invalid * if the <code>BigInteger</code> bit at that index is not set. * @param bits the number of bits each pixel occupies * @param size the size of the color component array * @param cmap the array of color components * @param start the starting offset of the first color component * @param transferType the specified data type * @param validBits a <code>BigInteger</code> object. If a bit is * set in the BigInteger, the pixel at that index is valid. * If a bit is not set, the pixel at that index * is considered invalid. If null, all pixels are valid. * Only bits from 0 to the map size are considered. * @throws IllegalArgumentException if <code>bits</code> is less * than 1 or greater than 16 * @throws IllegalArgumentException if <code>size</code> is less * than 1 * @throws IllegalArgumentException if <code>transferType</code> is not * one of <code>DataBuffer.TYPE_BYTE</code> or * <code>DataBuffer.TYPE_USHORT</code> * * @since 1.3 */ public IndexColorModel(int bits, int size, int cmap[], int start, int transferType, BigInteger validBits) { super (bits, alphaBits, ColorSpace.getInstance(ColorSpace.CS_sRGB), true, false, TRANSLUCENT, transferType); if (bits < 1 || bits > 16) { throw new IllegalArgumentException("Number of bits must be between" +" 1 and 16."); } if (size < 1) { throw new IllegalArgumentException("Map size ("+size+ ") must be >= 1"); } if ((transferType != DataBuffer.TYPE_BYTE) && (transferType != DataBuffer.TYPE_USHORT)) { throw new IllegalArgumentException("transferType must be either" + "DataBuffer.TYPE_BYTE or DataBuffer.TYPE_USHORT"); } if (validBits != null) { // Check to see if it is all valid for (int i=0; i < size; i++) { if (!validBits.testBit(i)) { this.validBits = validBits; break; } } } setRGBs(size, cmap, start, true); calculatePixelMask(); } private void setRGBs(int size, byte r[], byte g[], byte b[], byte a[]) { if (size < 1) { throw new IllegalArgumentException("Map size ("+size+ ") must be >= 1"); } map_size = size; rgb = new int[calcRealMapSize(pixel_bits, size)]; int alpha = 0xff; int transparency = OPAQUE; boolean allgray = true; for (int i = 0; i < size; i++) { int rc = r[i] & 0xff; int gc = g[i] & 0xff; int bc = b[i] & 0xff; allgray = allgray && (rc == gc) && (gc == bc); if (a != null) { alpha = a[i] & 0xff; if (alpha != 0xff) { if (alpha == 0x00) { if (transparency == OPAQUE) { transparency = BITMASK; } if (transparent_index < 0) { transparent_index = i; } } else { transparency = TRANSLUCENT; } allgray = false; } } rgb[i] = (alpha << 24) | (rc << 16) | (gc << 8) | bc; } this.allgrayopaque = allgray; setTransparency(transparency); } private void setRGBs(int size, int cmap[], int start, boolean hasalpha) { map_size = size; rgb = new int[calcRealMapSize(pixel_bits, size)]; int j = start; int transparency = OPAQUE; boolean allgray = true; BigInteger validBits = this.validBits; for (int i = 0; i < size; i++, j++) { if (validBits != null && !validBits.testBit(i)) { continue; } int cmaprgb = cmap[j]; int r = (cmaprgb >> 16) & 0xff; int g = (cmaprgb >> 8) & 0xff; int b = (cmaprgb ) & 0xff; allgray = allgray && (r == g) && (g == b); if (hasalpha) { int alpha = cmaprgb >>> 24; if (alpha != 0xff) { if (alpha == 0x00) { if (transparency == OPAQUE) { transparency = BITMASK; } if (transparent_index < 0) { transparent_index = i; } } else { transparency = TRANSLUCENT; } allgray = false; } } else { cmaprgb |= 0xff000000; } rgb[i] = cmaprgb; } this.allgrayopaque = allgray; setTransparency(transparency); } private int calcRealMapSize(int bits, int size) { int newSize = Math.max(1 << bits, size); return Math.max(newSize, 256); } private BigInteger getAllValid() { int numbytes = (map_size+7)/8; byte[] valid = new byte[numbytes]; java.util.Arrays.fill(valid, (byte)0xff); valid[0] = (byte)(0xff >>> (numbytes*8 - map_size)); return new BigInteger(1, valid); } /** * Returns the transparency. Returns either OPAQUE, BITMASK, * or TRANSLUCENT * @return the transparency of this <code>IndexColorModel</code> * @see Transparency#OPAQUE * @see Transparency#BITMASK * @see Transparency#TRANSLUCENT */ public int getTransparency() { return transparency; } /** * Returns an array of the number of bits for each color/alpha component. * The array contains the color components in the order red, green, * blue, followed by the alpha component, if present. * @return an array containing the number of bits of each color * and alpha component of this <code>IndexColorModel</code> */ public int[] getComponentSize() { if (nBits == null) { if (supportsAlpha) { nBits = new int[4]; nBits[3] = 8; } else { nBits = new int[3]; } nBits[0] = nBits[1] = nBits[2] = 8; } return nBits.clone(); } /** * Returns the size of the color/alpha component arrays in this * <code>IndexColorModel</code>. * @return the size of the color and alpha component arrays. */ final public int getMapSize() { return map_size; } /** * Returns the index of a transparent pixel in this * <code>IndexColorModel</code> or -1 if there is no pixel * with an alpha value of 0. If a transparent pixel was * explicitly specified in one of the constructors by its * index, then that index will be preferred, otherwise, * the index of any pixel which happens to be fully transparent * may be returned. * @return the index of a transparent pixel in this * <code>IndexColorModel</code> object, or -1 if there * is no such pixel */ final public int getTransparentPixel() { return transparent_index; } /** * Copies the array of red color components into the specified array. * Only the initial entries of the array as specified by * {@link #getMapSize() getMapSize} are written. * @param r the specified array into which the elements of the * array of red color components are copied */ final public void getReds(byte r[]) { for (int i = 0; i < map_size; i++) { r[i] = (byte) (rgb[i] >> 16); } } /** * Copies the array of green color components into the specified array. * Only the initial entries of the array as specified by * <code>getMapSize</code> are written. * @param g the specified array into which the elements of the * array of green color components are copied */ final public void getGreens(byte g[]) { for (int i = 0; i < map_size; i++) { g[i] = (byte) (rgb[i] >> 8); } } /** * Copies the array of blue color components into the specified array. * Only the initial entries of the array as specified by * <code>getMapSize</code> are written. * @param b the specified array into which the elements of the * array of blue color components are copied */ final public void getBlues(byte b[]) { for (int i = 0; i < map_size; i++) { b[i] = (byte) rgb[i]; } } /** * Copies the array of alpha transparency components into the * specified array. Only the initial entries of the array as specified * by <code>getMapSize</code> are written. * @param a the specified array into which the elements of the * array of alpha components are copied */ final public void getAlphas(byte a[]) { for (int i = 0; i < map_size; i++) { a[i] = (byte) (rgb[i] >> 24); } } /** * Converts data for each index from the color and alpha component * arrays to an int in the default RGB ColorModel format and copies * the resulting 32-bit ARGB values into the specified array. Only * the initial entries of the array as specified by * <code>getMapSize</code> are * written. * @param rgb the specified array into which the converted ARGB * values from this array of color and alpha components * are copied. */ final public void getRGBs(int rgb[]) { System.arraycopy(this.rgb, 0, rgb, 0, map_size); } private void setTransparentPixel(int trans) { if (trans >= 0 && trans < map_size) { rgb[trans] &= 0x00ffffff; transparent_index = trans; allgrayopaque = false; if (this.transparency == OPAQUE) { setTransparency(BITMASK); } } } private void setTransparency(int transparency) { if (this.transparency != transparency) { this.transparency = transparency; if (transparency == OPAQUE) { supportsAlpha = false; numComponents = 3; nBits = opaqueBits; } else { supportsAlpha = true; numComponents = 4; nBits = alphaBits; } } } /** * This method is called from the constructors to set the pixel_mask * value, which is based on the value of pixel_bits. The pixel_mask * value is used to mask off the pixel parameters for methods such * as getRed(), getGreen(), getBlue(), getAlpha(), and getRGB(). */ private final void calculatePixelMask() { // Note that we adjust the mask so that our masking behavior here // is consistent with that of our native rendering loops. int maskbits = pixel_bits; if (maskbits == 3) { maskbits = 4; } else if (maskbits > 4 && maskbits < 8) { maskbits = 8; } pixel_mask = (1 << maskbits) - 1; } /** * Returns the red color component for the specified pixel, scaled * from 0 to 255 in the default RGB ColorSpace, sRGB. The pixel value * is specified as an int. * Only the lower <em>n</em> bits of the pixel value, as specified in the * <a href="#index_values">class description</a> above, are used to * calculate the returned value. * The returned value is a non pre-multiplied value. * @param pixel the specified pixel * @return the value of the red color component for the specified pixel */ final public int getRed(int pixel) { return (rgb[pixel & pixel_mask] >> 16) & 0xff; } /** * Returns the green color component for the specified pixel, scaled * from 0 to 255 in the default RGB ColorSpace, sRGB. The pixel value * is specified as an int. * Only the lower <em>n</em> bits of the pixel value, as specified in the * <a href="#index_values">class description</a> above, are used to * calculate the returned value. * The returned value is a non pre-multiplied value. * @param pixel the specified pixel * @return the value of the green color component for the specified pixel */ final public int getGreen(int pixel) { return (rgb[pixel & pixel_mask] >> 8) & 0xff; } /** * Returns the blue color component for the specified pixel, scaled * from 0 to 255 in the default RGB ColorSpace, sRGB. The pixel value * is specified as an int. * Only the lower <em>n</em> bits of the pixel value, as specified in the * <a href="#index_values">class description</a> above, are used to * calculate the returned value. * The returned value is a non pre-multiplied value. * @param pixel the specified pixel * @return the value of the blue color component for the specified pixel */ final public int getBlue(int pixel) { return rgb[pixel & pixel_mask] & 0xff; } /** * Returns the alpha component for the specified pixel, scaled * from 0 to 255. The pixel value is specified as an int. * Only the lower <em>n</em> bits of the pixel value, as specified in the * <a href="#index_values">class description</a> above, are used to * calculate the returned value. * @param pixel the specified pixel * @return the value of the alpha component for the specified pixel */ final public int getAlpha(int pixel) { return (rgb[pixel & pixel_mask] >> 24) & 0xff; } /** * Returns the color/alpha components of the pixel in the default * RGB color model format. The pixel value is specified as an int. * Only the lower <em>n</em> bits of the pixel value, as specified in the * <a href="#index_values">class description</a> above, are used to * calculate the returned value. * The returned value is in a non pre-multiplied format. * @param pixel the specified pixel * @return the color and alpha components of the specified pixel * @see ColorModel#getRGBdefault */ final public int getRGB(int pixel) { return rgb[pixel & pixel_mask]; } private static final int CACHESIZE = 40; private int lookupcache[] = new int[CACHESIZE]; /** * Returns a data element array representation of a pixel in this * ColorModel, given an integer pixel representation in the * default RGB color model. This array can then be passed to the * {@link WritableRaster#setDataElements(int, int, java.lang.Object) setDataElements} * method of a {@link WritableRaster} object. If the pixel variable is * <code>null</code>, a new array is allocated. If <code>pixel</code> * is not <code>null</code>, it must be * a primitive array of type <code>transferType</code>; otherwise, a * <code>ClassCastException</code> is thrown. An * <code>ArrayIndexOutOfBoundsException</code> is * thrown if <code>pixel</code> is not large enough to hold a pixel * value for this <code>ColorModel</code>. The pixel array is returned. * <p> * Since <code>IndexColorModel</code> can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an * unsupported <code>transferType</code>. * * @param rgb the integer pixel representation in the default RGB * color model * @param pixel the specified pixel * @return an array representation of the specified pixel in this * <code>IndexColorModel</code>. * @throws ClassCastException if <code>pixel</code> * is not a primitive array of type <code>transferType</code> * @throws ArrayIndexOutOfBoundsException if * <code>pixel</code> is not large enough to hold a pixel value * for this <code>ColorModel</code> * @throws UnsupportedOperationException if <code>transferType</code> * is invalid * @see WritableRaster#setDataElements * @see SampleModel#setDataElements */ public synchronized Object getDataElements(int rgb, Object pixel) { int red = (rgb>>16) & 0xff; int green = (rgb>>8) & 0xff; int blue = rgb & 0xff; int alpha = (rgb>>>24); int pix = 0; // Note that pixels are stored at lookupcache[2*i] // and the rgb that was searched is stored at // lookupcache[2*i+1]. Also, the pixel is first // inverted using the unary complement operator // before storing in the cache so it can never be 0. for (int i = CACHESIZE - 2; i >= 0; i -= 2) { if ((pix = lookupcache[i]) == 0) { break; } if (rgb == lookupcache[i+1]) { return installpixel(pixel, ~pix); } } if (allgrayopaque) { // IndexColorModel objects are all tagged as // non-premultiplied so ignore the alpha value // of the incoming color, convert the // non-premultiplied color components to a // grayscale value and search for the closest // gray value in the palette. Since all colors // in the palette are gray, we only need compare // to one of the color components for a match // using a simple linear distance formula. int minDist = 256; int d; int gray = (int) (red*77 + green*150 + blue*29 + 128)/256; for (int i = 0; i < map_size; i++) { if (this.rgb[i] == 0x0) { // For allgrayopaque colormaps, entries are 0 // iff they are an invalid color and should be // ignored during color searches. continue; } d = (this.rgb[i] & 0xff) - gray; if (d < 0) d = -d; if (d < minDist) { pix = i; if (d == 0) { break; } minDist = d; } } } else if (transparency == OPAQUE) { // IndexColorModel objects are all tagged as // non-premultiplied so ignore the alpha value // of the incoming color and search for closest // color match independently using a 3 component // Euclidean distance formula. // For opaque colormaps, palette entries are 0 // iff they are an invalid color and should be // ignored during color searches. // As an optimization, exact color searches are // likely to be fairly common in opaque colormaps // so first we will do a quick search for an // exact match. int smallestError = Integer.MAX_VALUE; int lut[] = this.rgb; int lutrgb; for (int i=0; i < map_size; i++) { lutrgb = lut[i]; if (lutrgb == rgb && lutrgb != 0) { pix = i; smallestError = 0; break; } } if (smallestError != 0) { for (int i=0; i < map_size; i++) { lutrgb = lut[i]; if (lutrgb == 0) { continue; } int tmp = ((lutrgb >> 16) & 0xff) - red; int currentError = tmp*tmp; if (currentError < smallestError) { tmp = ((lutrgb >> 8) & 0xff) - green; currentError += tmp * tmp; if (currentError < smallestError) { tmp = (lutrgb & 0xff) - blue; currentError += tmp * tmp; if (currentError < smallestError) { pix = i; smallestError = currentError; } } } } } } else if (alpha == 0 && transparent_index >= 0) { // Special case - transparent color maps to the // specified transparent pixel, if there is one pix = transparent_index; } else { // IndexColorModel objects are all tagged as // non-premultiplied so use non-premultiplied // color components in the distance calculations. // Look for closest match using a 4 component // Euclidean distance formula. int smallestError = Integer.MAX_VALUE; int lut[] = this.rgb; for (int i=0; i < map_size; i++) { int lutrgb = lut[i]; if (lutrgb == rgb) { if (validBits != null && !validBits.testBit(i)) { continue; } pix = i; break; } int tmp = ((lutrgb >> 16) & 0xff) - red; int currentError = tmp*tmp; if (currentError < smallestError) { tmp = ((lutrgb >> 8) & 0xff) - green; currentError += tmp * tmp; if (currentError < smallestError) { tmp = (lutrgb & 0xff) - blue; currentError += tmp * tmp; if (currentError < smallestError) { tmp = (lutrgb >>> 24) - alpha; currentError += tmp * tmp; if (currentError < smallestError && (validBits == null || validBits.testBit(i))) { pix = i; smallestError = currentError; } } } } } } System.arraycopy(lookupcache, 2, lookupcache, 0, CACHESIZE - 2); lookupcache[CACHESIZE - 1] = rgb; lookupcache[CACHESIZE - 2] = ~pix; return installpixel(pixel, pix); } private Object installpixel(Object pixel, int pix) { switch (transferType) { case DataBuffer.TYPE_INT: int[] intObj; if (pixel == null) { pixel = intObj = new int[1]; } else { intObj = (int[]) pixel; } intObj[0] = pix; break; case DataBuffer.TYPE_BYTE: byte[] byteObj; if (pixel == null) { pixel = byteObj = new byte[1]; } else { byteObj = (byte[]) pixel; } byteObj[0] = (byte) pix; break; case DataBuffer.TYPE_USHORT: short[] shortObj; if (pixel == null) { pixel = shortObj = new short[1]; } else { shortObj = (short[]) pixel; } shortObj[0] = (short) pix; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return pixel; } /** * Returns an array of unnormalized color/alpha components for a * specified pixel in this <code>ColorModel</code>. The pixel value * is specified as an int. If the <code>components</code> array is <code>null</code>, * a new array is allocated that contains * <code>offset + getNumComponents()</code> elements. * The <code>components</code> array is returned, * with the alpha component included * only if <code>hasAlpha</code> returns true. * Color/alpha components are stored in the <code>components</code> array starting * at <code>offset</code> even if the array is allocated by this method. * An <code>ArrayIndexOutOfBoundsException</code> * is thrown if the <code>components</code> array is not <code>null</code> and is * not large enough to hold all the color and alpha components * starting at <code>offset</code>. * @param pixel the specified pixel * @param components the array to receive the color and alpha * components of the specified pixel * @param offset the offset into the <code>components</code> array at * which to start storing the color and alpha components * @return an array containing the color and alpha components of the * specified pixel starting at the specified offset. * @see ColorModel#hasAlpha * @see ColorModel#getNumComponents */ public int[] getComponents(int pixel, int[] components, int offset) { if (components == null) { components = new int[offset+numComponents]; } // REMIND: Needs to change if different color space components[offset+0] = getRed(pixel); components[offset+1] = getGreen(pixel); components[offset+2] = getBlue(pixel); if (supportsAlpha && (components.length-offset) > 3) { components[offset+3] = getAlpha(pixel); } return components; } /** * Returns an array of unnormalized color/alpha components for * a specified pixel in this <code>ColorModel</code>. The pixel * value is specified by an array of data elements of type * <code>transferType</code> passed in as an object reference. * If <code>pixel</code> is not a primitive array of type * <code>transferType</code>, a <code>ClassCastException</code> * is thrown. An <code>ArrayIndexOutOfBoundsException</code> * is thrown if <code>pixel</code> is not large enough to hold * a pixel value for this <code>ColorModel</code>. If the * <code>components</code> array is <code>null</code>, a new array * is allocated that contains * <code>offset + getNumComponents()</code> elements. * The <code>components</code> array is returned, * with the alpha component included * only if <code>hasAlpha</code> returns true. * Color/alpha components are stored in the <code>components</code> * array starting at <code>offset</code> even if the array is * allocated by this method. An * <code>ArrayIndexOutOfBoundsException</code> is also * thrown if the <code>components</code> array is not * <code>null</code> and is not large enough to hold all the color * and alpha components starting at <code>offset</code>. * <p> * Since <code>IndexColorModel</code> can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an * unsupported <code>transferType</code>. * * @param pixel the specified pixel * @param components an array that receives the color and alpha * components of the specified pixel * @param offset the index into the <code>components</code> array at * which to begin storing the color and alpha components of the * specified pixel * @return an array containing the color and alpha components of the * specified pixel starting at the specified offset. * @throws ArrayIndexOutOfBoundsException if <code>pixel</code> * is not large enough to hold a pixel value for this * <code>ColorModel</code> or if the * <code>components</code> array is not <code>null</code> * and is not large enough to hold all the color * and alpha components starting at <code>offset</code> * @throws ClassCastException if <code>pixel</code> is not a * primitive array of type <code>transferType</code> * @throws UnsupportedOperationException if <code>transferType</code> * is not one of the supported transfer types * @see ColorModel#hasAlpha * @see ColorModel#getNumComponents */ public int[] getComponents(Object pixel, int[] components, int offset) { int intpixel; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])pixel; intpixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])pixel; intpixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])pixel; intpixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getComponents(intpixel, components, offset); } /** * Returns a pixel value represented as an int in this * <code>ColorModel</code> given an array of unnormalized * color/alpha components. An * <code>ArrayIndexOutOfBoundsException</code> * is thrown if the <code>components</code> array is not large * enough to hold all of the color and alpha components starting * at <code>offset</code>. Since * <code>ColorModel</code> can be subclassed, subclasses inherit the * implementation of this method and if they don't override it then * they throw an exception if they use an unsupported transferType. * @param components an array of unnormalized color and alpha * components * @param offset the index into <code>components</code> at which to * begin retrieving the color and alpha components * @return an <code>int</code> pixel value in this * <code>ColorModel</code> corresponding to the specified components. * @throws ArrayIndexOutOfBoundsException if * the <code>components</code> array is not large enough to * hold all of the color and alpha components starting at * <code>offset</code> * @throws UnsupportedOperationException if <code>transferType</code> * is invalid */ public int getDataElement(int[] components, int offset) { int rgb = (components[offset+0]<<16) | (components[offset+1]<<8) | (components[offset+2]); if (supportsAlpha) { rgb |= (components[offset+3]<<24); } else { rgb |= 0xff000000; } Object inData = getDataElements(rgb, null); int pixel; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0]; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return pixel; } /** * Returns a data element array representation of a pixel in this * <code>ColorModel</code> given an array of unnormalized color/alpha * components. This array can then be passed to the * <code>setDataElements</code> method of a <code>WritableRaster</code> * object. An <code>ArrayIndexOutOfBoundsException</code> is * thrown if the * <code>components</code> array is not large enough to hold all of the * color and alpha components starting at <code>offset</code>. * If the pixel variable is <code>null</code>, a new array * is allocated. If <code>pixel</code> is not <code>null</code>, * it must be a primitive array of type <code>transferType</code>; * otherwise, a <code>ClassCastException</code> is thrown. * An <code>ArrayIndexOutOfBoundsException</code> is thrown if pixel * is not large enough to hold a pixel value for this * <code>ColorModel</code>. * <p> * Since <code>IndexColorModel</code> can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an * unsupported <code>transferType</code> * * @param components an array of unnormalized color and alpha * components * @param offset the index into <code>components</code> at which to * begin retrieving color and alpha components * @param pixel the <code>Object</code> representing an array of color * and alpha components * @return an <code>Object</code> representing an array of color and * alpha components. * @throws ClassCastException if <code>pixel</code> * is not a primitive array of type <code>transferType</code> * @throws ArrayIndexOutOfBoundsException if * <code>pixel</code> is not large enough to hold a pixel value * for this <code>ColorModel</code> or the <code>components</code> * array is not large enough to hold all of the color and alpha * components starting at <code>offset</code> * @throws UnsupportedOperationException if <code>transferType</code> * is not one of the supported transfer types * @see WritableRaster#setDataElements * @see SampleModel#setDataElements */ public Object getDataElements(int[] components, int offset, Object pixel) { int rgb = (components[offset+0]<<16) | (components[offset+1]<<8) | (components[offset+2]); if (supportsAlpha) { rgb |= (components[offset+3]<<24); } else { rgb &= 0xff000000; } return getDataElements(rgb, pixel); } /** * Creates a <code>WritableRaster</code> with the specified width * and height that has a data layout (<code>SampleModel</code>) * compatible with this <code>ColorModel</code>. This method * only works for color models with 16 or fewer bits per pixel. * <p> * Since <code>IndexColorModel</code> can be subclassed, any * subclass that supports greater than 16 bits per pixel must * override this method. * * @param w the width to apply to the new <code>WritableRaster</code> * @param h the height to apply to the new <code>WritableRaster</code> * @return a <code>WritableRaster</code> object with the specified * width and height. * @throws UnsupportedOperationException if the number of bits in a * pixel is greater than 16 * @see WritableRaster * @see SampleModel */ public WritableRaster createCompatibleWritableRaster(int w, int h) { WritableRaster raster; if (pixel_bits == 1 || pixel_bits == 2 || pixel_bits == 4) { // TYPE_BINARY raster = Raster.createPackedRaster(DataBuffer.TYPE_BYTE, w, h, 1, pixel_bits, null); } else if (pixel_bits <= 8) { raster = Raster.createInterleavedRaster(DataBuffer.TYPE_BYTE, w,h,1,null); } else if (pixel_bits <= 16) { raster = Raster.createInterleavedRaster(DataBuffer.TYPE_USHORT, w,h,1,null); } else { throw new UnsupportedOperationException("This method is not supported "+ " for pixel bits > 16."); } return raster; } /** * Returns <code>true</code> if <code>raster</code> is compatible * with this <code>ColorModel</code> or <code>false</code> if it * is not compatible with this <code>ColorModel</code>. * @param raster the {@link Raster} object to test for compatibility * @return <code>true</code> if <code>raster</code> is compatible * with this <code>ColorModel</code>; <code>false</code> otherwise. * */ public boolean isCompatibleRaster(Raster raster) { int size = raster.getSampleModel().getSampleSize(0); return ((raster.getTransferType() == transferType) && (raster.getNumBands() == 1) && ((1 << size) >= map_size)); } /** * Creates a <code>SampleModel</code> with the specified * width and height that has a data layout compatible with * this <code>ColorModel</code>. * @param w the width to apply to the new <code>SampleModel</code> * @param h the height to apply to the new <code>SampleModel</code> * @return a <code>SampleModel</code> object with the specified * width and height. * @throws IllegalArgumentException if <code>w</code> or * <code>h</code> is not greater than 0 * @see SampleModel */ public SampleModel createCompatibleSampleModel(int w, int h) { int[] off = new int[1]; off[0] = 0; if (pixel_bits == 1 || pixel_bits == 2 || pixel_bits == 4) { return new MultiPixelPackedSampleModel(transferType, w, h, pixel_bits); } else { return new ComponentSampleModel(transferType, w, h, 1, w, off); } } /** * Checks if the specified <code>SampleModel</code> is compatible * with this <code>ColorModel</code>. If <code>sm</code> is * <code>null</code>, this method returns <code>false</code>. * @param sm the specified <code>SampleModel</code>, * or <code>null</code> * @return <code>true</code> if the specified <code>SampleModel</code> * is compatible with this <code>ColorModel</code>; <code>false</code> * otherwise. * @see SampleModel */ public boolean isCompatibleSampleModel(SampleModel sm) { // fix 4238629 if (! (sm instanceof ComponentSampleModel) && ! (sm instanceof MultiPixelPackedSampleModel) ) { return false; } // Transfer type must be the same if (sm.getTransferType() != transferType) { return false; } if (sm.getNumBands() != 1) { return false; } return true; } /** * Returns a new <code>BufferedImage</code> of TYPE_INT_ARGB or * TYPE_INT_RGB that has a <code>Raster</code> with pixel data * computed by expanding the indices in the source <code>Raster</code> * using the color/alpha component arrays of this <code>ColorModel</code>. * Only the lower <em>n</em> bits of each index value in the source * <code>Raster</code>, as specified in the * <a href="#index_values">class description</a> above, are used to * compute the color/alpha values in the returned image. * If <code>forceARGB</code> is <code>true</code>, a TYPE_INT_ARGB image is * returned regardless of whether or not this <code>ColorModel</code> * has an alpha component array or a transparent pixel. * @param raster the specified <code>Raster</code> * @param forceARGB if <code>true</code>, the returned * <code>BufferedImage</code> is TYPE_INT_ARGB; otherwise it is * TYPE_INT_RGB * @return a <code>BufferedImage</code> created with the specified * <code>Raster</code> * @throws IllegalArgumentException if the raster argument is not * compatible with this IndexColorModel */ public BufferedImage convertToIntDiscrete(Raster raster, boolean forceARGB) { ColorModel cm; if (!isCompatibleRaster(raster)) { throw new IllegalArgumentException("This raster is not compatible" + "with this IndexColorModel."); } if (forceARGB || transparency == TRANSLUCENT) { cm = ColorModel.getRGBdefault(); } else if (transparency == BITMASK) { cm = new DirectColorModel(25, 0xff0000, 0x00ff00, 0x0000ff, 0x1000000); } else { cm = new DirectColorModel(24, 0xff0000, 0x00ff00, 0x0000ff); } int w = raster.getWidth(); int h = raster.getHeight(); WritableRaster discreteRaster = cm.createCompatibleWritableRaster(w, h); Object obj = null; int[] data = null; int rX = raster.getMinX(); int rY = raster.getMinY(); for (int y=0; y < h; y++, rY++) { obj = raster.getDataElements(rX, rY, w, 1, obj); if (obj instanceof int[]) { data = (int[])obj; } else { data = DataBuffer.toIntArray(obj); } for (int x=0; x < w; x++) { data[x] = rgb[data[x] & pixel_mask]; } discreteRaster.setDataElements(0, y, w, 1, data); } return new BufferedImage(cm, discreteRaster, false, null); } /** * Returns whether or not the pixel is valid. * @param pixel the specified pixel value * @return <code>true</code> if <code>pixel</code> * is valid; <code>false</code> otherwise. * @since 1.3 */ public boolean isValid(int pixel) { return ((pixel >= 0 && pixel < map_size) && (validBits == null || validBits.testBit(pixel))); } /** * Returns whether or not all of the pixels are valid. * @return <code>true</code> if all pixels are valid; * <code>false</code> otherwise. * @since 1.3 */ public boolean isValid() { return (validBits == null); } /** * Returns a <code>BigInteger</code> that indicates the valid/invalid * pixels in the colormap. A bit is valid if the * <code>BigInteger</code> value at that index is set, and is invalid * if the <code>BigInteger</code> value at that index is not set. * The only valid ranges to query in the <code>BigInteger</code> are * between 0 and the map size. * @return a <code>BigInteger</code> indicating the valid/invalid pixels. * @since 1.3 */ public BigInteger getValidPixels() { if (validBits == null) { return getAllValid(); } else { return validBits; } } /** * Disposes of system resources associated with this * <code>ColorModel</code> once this <code>ColorModel</code> is no * longer referenced. */ public void finalize() { } /** * Returns the <code>String</code> representation of the contents of * this <code>ColorModel</code>object. * @return a <code>String</code> representing the contents of this * <code>ColorModel</code> object. */ public String toString() { return new String("IndexColorModel: #pixelBits = "+pixel_bits + " numComponents = "+numComponents + " color space = "+colorSpace + " transparency = "+transparency + " transIndex = "+transparent_index + " has alpha = "+supportsAlpha + " isAlphaPre = "+isAlphaPremultiplied ); } }
⏎ java/awt/image/IndexColorModel.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2023-08-23, 289356👍, 4💬
Popular Posts:
JDK 11 jdk.jlink.jmod is the JMOD file for JDK 11 JLink tool, which can be invoked by the "jlink" co...
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms, it was develo...
JDK 11 jdk.internal.opt.jmod is the JMOD file for JDK 11 Internal Opt module. JDK 11 Internal Opt mo...
JDK 11 java.rmi.jmod is the JMOD file for JDK 11 RMI (Remote Method Invocation) module. JDK 11 RMI m...
JAX-RPC is an API for building Web services and clients that used remote procedure calls (RPC) and X...