JDK 1.1 Source Code Directory

JDK 1.1 source code directory contains Java source code for JDK 1.1 core classes: "C:\fyicenter\jdk-1.1.8\src".

Here is the list of Java classes of the JDK 1.1 source code:

✍: FYIcenter

java/text/DigitList.java

/*
 * @(#)DigitList.java	1.14 01/12/10
 *
 * (C) Copyright Taligent, Inc. 1996 - All Rights Reserved
 * (C) Copyright IBM Corp. 1996 - All Rights Reserved
 *
 * Portions copyright (c) 2002 Sun Microsystems, Inc. All Rights Reserved.
 *
 *   The original version of this source code and documentation is copyrighted
 * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
 * materials are provided under terms of a License Agreement between Taligent
 * and Sun. This technology is protected by multiple US and International
 * patents. This notice and attribution to Taligent may not be removed.
 *   Taligent is a registered trademark of Taligent, Inc.
 *
 * Permission to use, copy, modify, and distribute this software
 * and its documentation for NON-COMMERCIAL purposes and without
 * fee is hereby granted provided that this copyright notice
 * appears in all copies. Please refer to the file "copyright.html"
 * for further important copyright and licensing information.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 *
 */

package java.text;

/**
 * Digit List. Private to DecimalFormat.
 * Handles the transcoding
 * between numeric values and strings of characters.  Only handles
 * non-negative numbers.  The division of labor between DigitList and
 * DecimalFormat is that DigitList handles the radix 10 representation
 * issues; DecimalFormat handles the locale-specific issues such as
 * positive/negative, grouping, decimal point, currency, and so on.
 *
 * A DigitList is really a representation of a floating point value.
 * It may be an integer value; we assume that a double has sufficient
 * precision to represent all digits of a long.
 *
 * The DigitList representation consists of a string of characters,
 * which are the digits radix 10, from '0' to '9'.  It also has a radix
 * 10 exponent associated with it.  The value represented by a DigitList
 * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
 * derived by placing all the digits of the list to the right of the
 * decimal point, by 10^exponent.
 *
 * @see  Locale
 * @see  Format
 * @see  NumberFormat
 * @see  DecimalFormat
 * @see  ChoiceFormat
 * @see  MessageFormat
 * @version      1.14 12/10/01
 * @author       Mark Davis, Alan Liu
 */
final class DigitList implements Cloneable {
    /**
     * The maximum number of significant digits in an IEEE 754 double, that
     * is, in a Java double.  This must not be increased, or garbage digits
     * will be generated, and should not be decreased, or accuracy will be lost.
     */
    public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
    public static final int DBL_DIG = 17;

    /**
     * These data members are intentionally public and can be set directly.
     *
     * The value represented is given by placing the decimal point before
     * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
     * the decimal point and the first nonzero digit are implied.  If decimalAt
     * is > count, then trailing zeros between the digits[count-1] and the
     * decimal point are implied.
     *
     * Equivalently, the represented value is given by f * 10^decimalAt.  Here
     * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
     * the right of the decimal.
     *
     * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
     * don't allow denormalized numbers because our exponent is effectively of
     * unlimited magnitude.  The count value contains the number of significant
     * digits present in digits[].
     *
     * Zero is represented by any DigitList with count == 0 or with each digits[i]
     * for all i <= count == '0'.
     */
    public int decimalAt = 0;
    public int count = 0;
    public byte[] digits = new byte[MAX_COUNT];

    /**
     * Return true if the represented number is zero.
     */
    boolean isZero()
    {
        for (int i=0; i<count; ++i) if (digits[i] != '0') return false;
        return true;
    }

    /**
     * Clears out the digits.
     * Use before appending them.
     * Typically, you set a series of digits with append, then at the point
     * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
     * then go on appending digits.
     */
    public void clear () {
        decimalAt = 0;
        count = 0;
    }
    /**
     * Appends digits to the list. Ignores all digits over MAX_COUNT,
     * since they are not significant for either longs or doubles.
     */
    public void append (int digit) {
        if (count < MAX_COUNT)
            digits[count++] = (byte) digit;
    }
    /**
     * Utility routine to get the value of the digit list
     * If (count == 0) this throws a NumberFormatException, which
     * mimics Long.parseLong().
     */
    public final double getDouble() {
        if (count == 0) return 0.0;
        StringBuffer temp = new StringBuffer(count);
        temp.append('.');
        for (int i = 0; i < count; ++i) temp.append((char)(digits[i]));
        temp.append('E');
        temp.append(Integer.toString(decimalAt));
        return Double.valueOf(temp.toString()).doubleValue();
        // long value = Long.parseLong(temp.toString());
        // return (value * Math.pow(10, decimalAt - count));
    }

    /**
     * Utility routine to get the value of the digit list.
     * If (count == 0) this returns 0, unlike Long.parseLong().
     */
    public final long getLong() {
        // for now, simple implementation; later, do proper IEEE native stuff

        if (count == 0) return 0;

        // We have to check for this, because this is the one NEGATIVE value
        // we represent.  If we tried to just pass the digits off to parseLong,
        // we'd get a parse failure.
        if (isLongMIN_VALUE()) return Long.MIN_VALUE;

        StringBuffer temp = new StringBuffer(count);
        for (int i = 0; i < decimalAt; ++i)
        {
            temp.append((i < count) ? (char)(digits[i]) : '0');
        }
        return Long.parseLong(temp.toString());
    }

    /**
     * Return true if the number represented by this object can fit into
     * a long.
     */
    boolean fitsIntoLong(boolean isPositive)
    {
        // Figure out if the result will fit in a long.  We have to
        // first look for nonzero digits after the decimal point;
        // then check the size.  If the digit count is 18 or less, then
        // the value can definitely be represented as a long.  If it is 19
        // then it may be too large.

        // Trim trailing zeros.  This does not change the represented value.
        while (count > 0 && digits[count - 1] == (byte)'0') --count;

        if (count == 0) return true;

        if (decimalAt < count || decimalAt > MAX_COUNT) return false;

        if (decimalAt < MAX_COUNT) return true;

        // At this point we have decimalAt == count, and count == MAX_COUNT.
        // The number will overflow if it is larger than 9223372036854775807
        // or smaller than -9223372036854775808.
        for (int i=0; i<count; ++i)
        {
            byte dig = digits[i], max = LONG_MIN_REP[i];
            if (dig > max) return false;
            if (dig < max) return true;
        }

        // At this point the first count digits match.  If decimalAt is less
        // than count, then the remaining digits are zero, and we return true.
        if (count < decimalAt) return true;

        // Now we have a representation of Long.MIN_VALUE, without the leading
        // negative sign.  If this represents a positive value, then it does
        // not fit; otherwise it fits.
        return !isPositive;
    }

    private static final boolean DEBUG = false;

    /**
     * Set the digit list to a representation of the given double value.
     * This method supports fixed-point notation.
     * @param source Value to be converted; must not be Inf, -Inf, Nan,
     * or a value <= 0.
     * @param maximumFractionDigits The most fractional digits which should
     * be converted.
     */
    public final void set(double source, int maximumFractionDigits)
    {
        set(source, maximumFractionDigits, true);
    }

    /**
     * Set the digit list to a representation of the given double value.
     * This method supports both fixed-point and exponential notation.
     * @param source Value to be converted; must not be Inf, -Inf, Nan,
     * or a value <= 0.
     * @param maximumDigits The most fractional or total digits which should
     * be converted.
     * @param fixedPoint If true, then maximumDigits is the maximum
     * fractional digits to be converted.  If false, total digits.
     */
    final void set(double source, int maximumDigits, boolean fixedPoint)
    {
        // Generate a representation of the form DDDDD, DDDDD.DDDDD, or
        // DDDDDE+/-DDDDD.
        String rep = Double.toString(source);

        decimalAt = -1;
        count = 0;
        int exponent = 0;
        // Number of zeros between decimal point and first non-zero digit after
        // decimal point, for numbers < 1.
        int leadingZerosAfterDecimal = 0;
        boolean nonZeroDigitSeen = false;
        for (int i=0; i < rep.length(); ++i)
        {
            char c = rep.charAt(i);
            if (c == '.')
            {
            decimalAt = count;
            }
            else if (c == 'e' || c == 'E')
            {
            exponent = Integer.valueOf(rep.substring(i+1)).intValue();
            break;
            }
            else if (count < MAX_COUNT)
            {
            if (!nonZeroDigitSeen)
            {
                nonZeroDigitSeen = (c != '0');
                if (!nonZeroDigitSeen && decimalAt != -1) ++leadingZerosAfterDecimal;
            }

            if (nonZeroDigitSeen) digits[count++] = (byte)c;
            }
        }
        if (decimalAt == -1) decimalAt = count;
        decimalAt += exponent - leadingZerosAfterDecimal;

        if (fixedPoint)
        {
            // The negative of the exponent represents the number of leading
            // zeros between the decimal and the first non-zero digit, for
            // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
            // is more than the maximum fraction digits, then we have an underflow
            // for the printed representation.  We recognize this here and set
            // the DigitList representation to zero in this situation.
            if (-decimalAt >= maximumDigits) count = 0;
        }

        // Eliminate trailing zeros.
        while (count > 1 && digits[count - 1] == '0')
            --count;

        if (DEBUG)
        {
            System.out.print("Before rounding 0.");
            for (int i=0; i<count; ++i) System.out.print((char)digits[i]);
            System.out.println("x10^" + decimalAt);
        }

        // Eliminate digits beyond maximum digits to be displayed.
        // Round up if appropriate.
        round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);

        if (DEBUG)
        {
            System.out.print("After rounding 0.");
            for (int i=0; i<count; ++i) System.out.print((char)digits[i]);
            System.out.println("x10^" + decimalAt);
        }

        // The following method also works, and does not rely on the specific
        // format generated by Double.toString().  However, it introduces significant
        // errors in the least-significant digits, which cause round-trip parse and
        // format operations to fail.  We retain this code for future reference;
        // the compiler will ignore it.
        if (false)
        {
            // Find the exponent for this value.  Our convention is 0.mmmm * 10^decimalAt,
            // so we need to add one.
            decimalAt = log10(source) + 1;

            // Compute the number of digits to generate based on the maximum fraction
            // digits and the exponent.  For example, if the exponent is -95 and the
            // maximum fraction digits is 100, then we'll have 95 leading zeros and only
            // 5 significant digits.

            count = maximumDigits + decimalAt;
            if (count > DBL_DIG) count = DBL_DIG;
            if (count < 0) count = 0;
            if (count == 0) return; // Return if we've underflowed to zero

            // Put the mantissa into a long.  We create a mantissa value in the
            // range 10^n-1 <= mantissa < 10^n, where n is the desired number of
            // digits.  If this is a small number << 1, decimalAt may be negative,
            // indicating leading zeros between the decimal point an digits[0]. A
            // decimalAt value of 0 indicates that the decimal point is before
            // digits[0].

            //System.out.println("d = " + source + " log = " + (Math.log(source) / LOG10));
            //System.out.println("d == 0.1 " + (source == 0.1));
            long mantissa = Math.round(source * Math.pow(10, count - decimalAt));
            String longRep = Long.toString(mantissa);

            // At this point we have a representation of exactly maxDecimalCount
            // characters.
            // FOLLOWING LINE FOR DEBUGGING ONLY.  THIS catches problems with log10 computation.
            if (longRep.length() != count)
            throw new Error("Rep=" + longRep + " rep.length=" + longRep.length() +
                    " exp.len=" + count + " " +
                    "val=" + source + " mant=" + mantissa +
                    " decimalAt=" + decimalAt);

            // Eliminate trailing zeros.
            while (count > 1 && longRep.charAt(count - 1) == '0')
            --count;

            // Copy digits over
            for (int i=0; i<count; ++i)
            digits[i] = (byte)longRep.charAt(i);
        }
    }

    /**
     * Round the representation to the given number of digits.
     * @param maximumDigits The maximum number of digits to be shown.
     * Upon return, count will be less than or equal to maximumDigits.
     */
    private final void round(int maximumDigits)
    {
        // Eliminate digits beyond maximum digits to be displayed.
        // Round up if appropriate.
        if (maximumDigits >= 0 && maximumDigits < count)
        {
            // Check for round to the nearest even.  HShih
            if (digits[maximumDigits] == '5' && digits[maximumDigits-1] != '9' &&
                (maximumDigits+1 >= count || digits[maximumDigits+1] == '0')) {
                if (digits[maximumDigits-1] % 2 != 0)
                    ++digits[maximumDigits-1];
            } else if (digits[maximumDigits] >= '5')
            {
                // Rounding up involved incrementing digits from LSD to MSD.
                // In most cases this is simple, but in a worst case situation
                // (9999..99) we have to adjust the decimalAt value.
                for (;;)
                {
                    --maximumDigits;
                    if (maximumDigits < 0)
                    {
                        // We have all 9's, so we increment to a single digit
                        // of one and adjust the exponent.
                        digits[0] = '1';
                        ++decimalAt;
                        maximumDigits = 0; // Adjust the count
                        break;
                    }

                    ++digits[maximumDigits];
                    if (digits[maximumDigits] <= '9') break;
                    // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
                }
                ++maximumDigits; // Increment for use as count
            }
            count = maximumDigits;
        }
    }

    /**
     * Utility routine to set the value of the digit list from a long
     */
    public final void set(long source)
    {
        set(source, 0);
    }

    /**
     * Set the digit list to a representation of the given long value.
     * @param source Value to be converted; must be >= 0 or ==
     * Long.MIN_VALUE.
     * @param maximumDigits The most digits which should be converted.
     * If maximumDigits is lower than the number of significant digits
     * in source, the representation will be rounded.  Ignored if <= 0.
     */
    public final void set(long source, int maximumDigits)
    {
        // for now, simple implementation; later, do proper IEEE stuff
        //        String stringDigits = Long.toString(source);
        String stringDigits = Long.toString(source);

        // This method does not expect a negative number. However,
        // "source" can be a Long.MIN_VALUE (-9223372036854775808),
        // if the number being formatted is a Long.MIN_VALUE.  In that
        // case, it will be formatted as -Long.MIN_VALUE, a number
        // which is outside the legal range of a long, but which can
        // be represented by DigitList.
        if (stringDigits.charAt(0) == '-') stringDigits = stringDigits.substring(1);

        count = decimalAt = stringDigits.length();

        // Don't copy trailing zeros
        while (count > 1 && stringDigits.charAt(count - 1) == '0') --count;

            for (int i = 0; i < count; ++i)
                digits[i] = (byte) stringDigits.charAt(i);

        if (maximumDigits > 0) round(maximumDigits);
    }

    /**
     * equality test between two digit lists.
     */
    public boolean equals(Object obj) {
        if (this == obj)                      // quick check
            return true;
        if (!(obj instanceof DigitList))         // (1) same object?
            return false;
        DigitList other = (DigitList) obj;
        if (count != other.count ||
        decimalAt != other.decimalAt)
            return false;
        for (int i = 0; i < count; i++)
            if (digits[i] != other.digits[i])
                return false;
        return true;
    }

    /**
     * Generates the hash code for the digit list.
     */
    public int hashCode() {
        int hashcode = decimalAt;

        for (int i = 0; i < count; i++)
            hashcode = hashcode * 37 + digits[i];

        return hashcode;
    }

    /**
     * Returns true if this DigitList represents Long.MIN_VALUE;
     * false, otherwise.  This is required so that getLong() works.
     */
    private boolean isLongMIN_VALUE()
    {
        if (decimalAt != count || count != MAX_COUNT)
            return false;

            for (int i = 0; i < count; ++i)
        {
            if (digits[i] != LONG_MIN_REP[i]) return false;
        }

        return true;
    }

    private static byte[] LONG_MIN_REP;

    static
    {
        // Store the representation of LONG_MIN without the leading '-'
        String s = Long.toString(Long.MIN_VALUE);
        LONG_MIN_REP = new byte[MAX_COUNT];
        for (int i=0; i < MAX_COUNT; ++i)
        {
            LONG_MIN_REP[i] = (byte)s.charAt(i + 1);
        }
    }

    /**
     * Return the floor of the log base 10 of a given double.
     * This method compensates for inaccuracies which arise naturally when
     * computing logs, and always give the correct value.  The parameter
     * must be positive and finite.
     */
    private static final int log10(double d)
    {
        // The reason this routine is needed is that simply taking the
        // log and dividing by log10 yields a result which may be off
        // by 1 due to rounding errors.  For example, the naive log10
        // of 1.0e300 taken this way is 299, rather than 300.
        double log10 = Math.log(d) / LOG10;
        int ilog10 = (int)Math.floor(log10);
        // Positive logs could be too small, e.g. 0.99 instead of 1.0
        if (log10 > 0 && d >= Math.pow(10, ilog10 + 1))
        {
            ++ilog10;
        }
        // Negative logs could be too big, e.g. -0.99 instead of -1.0
        else if (log10 < 0 && d < Math.pow(10, ilog10))
        {
            --ilog10;
        }
        return ilog10;
    }

    private static final double LOG10 = Math.log(10.0);

    public String toString()
    {
        if (isZero()) return "0";
        StringBuffer buf = new StringBuffer("0.");
        for (int i=0; i<count; ++i) buf.append((char)digits[i]);
        buf.append("x10^");
        buf.append(decimalAt);
        return buf.toString();
    }
}

java/text/DigitList.java

 

Or download all of them as a single archive file:

File name: jdk-1.1.8-src.zip
File size: 1574187 bytes
Release date: 2018-11-16
Download 

 

Backup JDK 1.1 Installation Directory

JDK 1.1 classes.zip - Java Core Classes

Download and Review JDK 1.1

⇑⇑ FAQ for JDK (Java Development Kit)

2018-11-17, 149117👍, 0💬