Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 17 java.base.jmod - Base Module
JDK 17 java.base.jmod is the JMOD file for JDK 17 Base module.
JDK 17 Base module compiled class files are stored in \fyicenter\jdk-17.0.5\jmods\java.base.jmod.
JDK 17 Base module compiled class files are also linked and stored in the \fyicenter\jdk-17.0.5\lib\modules JImage file.
JDK 17 Base module source code files are stored in \fyicenter\jdk-17.0.5\lib\src.zip\java.base.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ java/lang/RuntimePermission.java
/* * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.lang; import java.security.*; import java.lang.module.ModuleFinder; /** * This class is for runtime permissions. A {@code RuntimePermission} * contains a name (also referred to as a "target name") but no actions * list; you either have the named permission or you don't. * <p> * The target name is the name of the runtime permission (see below). The * naming convention follows the hierarchical property naming convention. * Also, an asterisk may appear at the end of the name, following a ".", * or by itself, to signify a wildcard match. For example: "loadLibrary.*" * and "*" signify a wildcard match, while "*loadLibrary" and "a*b" do not. * <p> * The following table lists the standard {@code RuntimePermission} * target names, and for each provides a description of what the permission * allows and a discussion of the risks of granting code the permission. * * <table class="striped"> * <caption style="display:none">permission target name, * what the target allows, and associated risks</caption> * <thead> * <tr> * <th scope="col">Permission Target Name</th> * <th scope="col">What the Permission Allows</th> * <th scope="col">Risks of Allowing this Permission</th> * </tr> * </thead> * <tbody> * * <tr> * <th scope="row">createClassLoader</th> * <td>Creation of a class loader</td> * <td>This is an extremely dangerous permission to grant. * Malicious applications that can instantiate their own class * loaders could then load their own rogue classes into the system. * These newly loaded classes could be placed into any protection * domain by the class loader, thereby automatically granting the * classes the permissions for that domain.</td> * </tr> * * <tr> * <th scope="row">getClassLoader</th> * <td>Retrieval of a class loader (e.g., the class loader for the calling * class)</td> * <td>This would grant an attacker permission to get the * class loader for a particular class. This is dangerous because * having access to a class's class loader allows the attacker to * load other classes available to that class loader. The attacker * would typically otherwise not have access to those classes.</td> * </tr> * * <tr> * <th scope="row">setContextClassLoader</th> * <td>Setting of the context class loader used by a thread</td> * <td>The context class loader is used by system code and extensions * when they need to lookup resources that might not exist in the system * class loader. Granting setContextClassLoader permission would allow * code to change which context class loader is used * for a particular thread, including system threads.</td> * </tr> * * <tr> * <th scope="row">enableContextClassLoaderOverride</th> * <td>Subclass implementation of the thread context class loader methods</td> * <td>The context class loader is used by system code and extensions * when they need to lookup resources that might not exist in the system * class loader. Granting enableContextClassLoaderOverride permission would allow * a subclass of Thread to override the methods that are used * to get or set the context class loader for a particular thread.</td> * </tr> * * <tr> * <th scope="row">closeClassLoader</th> * <td>Closing of a ClassLoader</td> * <td>Granting this permission allows code to close any URLClassLoader * that it has a reference to.</td> * </tr> * * <tr> * <th scope="row">setSecurityManager</th> * <td>Setting of the security manager (possibly replacing an existing one) * </td> * <td>The security manager is a class that allows * applications to implement a security policy. Granting the setSecurityManager * permission would allow code to change which security manager is used by * installing a different, possibly less restrictive security manager, * thereby bypassing checks that would have been enforced by the original * security manager.</td> * </tr> * * <tr> * <th scope="row">createSecurityManager</th> * <td>Creation of a new security manager</td> * <td>This gives code access to protected, sensitive methods that may * disclose information about other classes or the execution stack.</td> * </tr> * * <tr> * <th scope="row">getenv.{variable name}</th> * <td>Reading of the value of the specified environment variable</td> * <td>This would allow code to read the value, or determine the * existence, of a particular environment variable. This is * dangerous if the variable contains confidential data.</td> * </tr> * * <tr> * <th scope="row">exitVM.{exit status}</th> * <td>Halting of the Java Virtual Machine with the specified exit status</td> * <td>This allows an attacker to mount a denial-of-service attack * by automatically forcing the virtual machine to halt. * Note: The "exitVM.*" permission is automatically granted to all code * loaded from the application class path, thus enabling applications * to terminate themselves. Also, the "exitVM" permission is equivalent to * "exitVM.*".</td> * </tr> * * <tr> * <th scope="row">shutdownHooks</th> * <td>Registration and cancellation of virtual-machine shutdown hooks</td> * <td>This allows an attacker to register a malicious shutdown * hook that interferes with the clean shutdown of the virtual machine.</td> * </tr> * * <tr> * <th scope="row">setFactory</th> * <td>Setting of the socket factory used by ServerSocket or Socket, * or of the stream handler factory used by URL</td> * <td>This allows code to set the actual implementation * for the socket, server socket, stream handler, or RMI socket factory. * An attacker may set a faulty implementation which mangles the data * stream.</td> * </tr> * * <tr> * <th scope="row">setIO</th> * <td>Setting of System.out, System.in, and System.err</td> * <td>This allows changing the value of the standard system streams. * An attacker may change System.in to monitor and * steal user input, or may set System.err to a "null" OutputStream, * which would hide any error messages sent to System.err. </td> * </tr> * * <tr> * <th scope="row">modifyThread</th> * <td>Modification of threads, e.g., via calls to Thread * {@code interrupt, stop, suspend, resume, setDaemon, setPriority, * setName} and {@code setUncaughtExceptionHandler} * methods</td> * <td>This allows an attacker to modify the behaviour of * any thread in the system.</td> * </tr> * * <tr> * <th scope="row">stopThread</th> * <td>Stopping of threads via calls to the Thread {@code stop} * method</td> * <td>This allows code to stop any thread in the system provided that it is * already granted permission to access that thread. * This poses as a threat, because that code may corrupt the system by * killing existing threads.</td> * </tr> * * <tr> * <th scope="row">modifyThreadGroup</th> * <td>modification of thread groups, e.g., via calls to ThreadGroup * {@code destroy}, {@code getParent}, {@code resume}, * {@code setDaemon}, {@code setMaxPriority}, {@code stop}, * and {@code suspend} methods</td> * <td>This allows an attacker to create thread groups and * set their run priority.</td> * </tr> * * <tr> * <th scope="row">getProtectionDomain</th> * <td>Retrieval of the ProtectionDomain for a class</td> * <td>This allows code to obtain policy information * for a particular code source. While obtaining policy information * does not compromise the security of the system, it does give * attackers additional information, such as local file names for * example, to better aim an attack.</td> * </tr> * * <tr> * <th scope="row">getFileSystemAttributes</th> * <td>Retrieval of file system attributes</td> * <td>This allows code to obtain file system information such as disk usage * or disk space available to the caller. This is potentially dangerous * because it discloses information about the system hardware * configuration and some information about the caller's privilege to * write files.</td> * </tr> * * <tr> * <th scope="row">readFileDescriptor</th> * <td>Reading of file descriptors</td> * <td>This would allow code to read the particular file associated * with the file descriptor read. This is dangerous if the file * contains confidential data.</td> * </tr> * * <tr> * <th scope="row">writeFileDescriptor</th> * <td>Writing to file descriptors</td> * <td>This allows code to write to a particular file associated * with the descriptor. This is dangerous because it may allow * malicious code to plant viruses or at the very least, fill up * your entire disk.</td> * </tr> * * <tr> * <th scope="row">loadLibrary.{library name}</th> * <td>Dynamic linking of the specified library</td> * <td>It is dangerous to allow an applet permission to load native code * libraries, because the Java security architecture is not designed to and * does not prevent malicious behavior at the level of native code.</td> * </tr> * * <tr> * <th scope="row">accessClassInPackage.{package name}</th> * <td>Access to the specified package via a class loader's * {@code loadClass} method when that class loader calls * the SecurityManager {@code checkPackageAccess} method</td> * <td>This gives code access to classes in packages * to which it normally does not have access. Malicious code * may use these classes to help in its attempt to compromise * security in the system.</td> * </tr> * * <tr> * <th scope="row">defineClassInPackage.{package name}</th> * <td>Definition of classes in the specified package, via a class * loader's {@code defineClass} method when that class loader calls * the SecurityManager {@code checkPackageDefinition} method.</td> * <td>This grants code permission to define a class * in a particular package. This is dangerous because malicious * code with this permission may define rogue classes in * trusted packages like {@code java.security} or {@code java.lang}, * for example.</td> * </tr> * * <tr> * <th scope="row">defineClass</th> * <td>Define a class with * {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[]) * Lookup.defineClass}.</td> * <td>This grants code with a suitably privileged {@code Lookup} object * permission to define classes in the same package as the {@code Lookup}'s * lookup class. </td> * </tr> * * <tr> * <th scope="row">accessDeclaredMembers</th> * <td>Access to the declared members of a class</td> * <td>This grants code permission to query a class for its public, * protected, default (package) access, and private fields and/or * methods. Although the code would have * access to the private and protected field and method names, it would not * have access to the private/protected field data and would not be able * to invoke any private methods. Nevertheless, malicious code * may use this information to better aim an attack. * Additionally, it may invoke any public methods and/or access public fields * in the class. This could be dangerous if * the code would normally not be able to invoke those methods and/or * access the fields because * it can't cast the object to the class/interface with those methods * and fields.</td> * </tr> * <tr> * <th scope="row">queuePrintJob</th> * <td>Initiation of a print job request</td> * <td>This could print sensitive information to a printer, * or simply waste paper.</td> * </tr> * * <tr> * <th scope="row">getStackTrace</th> * <td>Retrieval of the stack trace information of another thread.</td> * <td>This allows retrieval of the stack trace information of * another thread. This might allow malicious code to monitor the * execution of threads and discover vulnerabilities in applications.</td> * </tr> * * <tr> * <th scope="row">getStackWalkerWithClassReference</th> * <td>Get a stack walker that can retrieve stack frames with class reference.</td> * <td>This allows retrieval of Class objects from stack walking. * This might allow malicious code to access Class objects on the stack * outside its own context.</td> * </tr> * * <tr> * <th scope="row">setDefaultUncaughtExceptionHandler</th> * <td>Setting the default handler to be used when a thread * terminates abruptly due to an uncaught exception</td> * <td>This allows an attacker to register a malicious * uncaught exception handler that could interfere with termination * of a thread</td> * </tr> * * <tr> * <th scope="row">preferences</th> * <td>Represents the permission required to get access to the * java.util.prefs.Preferences implementations user or system root * which in turn allows retrieval or update operations within the * Preferences persistent backing store.) </td> * <td>This permission allows the user to read from or write to the * preferences backing store if the user running the code has * sufficient OS privileges to read/write to that backing store. * The actual backing store may reside within a traditional filesystem * directory or within a registry depending on the platform OS</td> * </tr> * * <tr> * <th scope="row">manageProcess</th> * <td>Native process termination and information about processes * {@link ProcessHandle}.</td> * <td>Allows code to identify and terminate processes that it did not create.</td> * </tr> * * <tr> * <th scope="row">localeServiceProvider</th> * <td>This {@code RuntimePermission} is required to be granted to * classes which subclass and implement * {@code java.util.spi.LocaleServiceProvider}. The permission is * checked during invocation of the abstract base class constructor. * This permission ensures trust in classes which implement this * security-sensitive provider mechanism. </td> * <td>See <a href= "../util/spi/LocaleServiceProvider.html"> * {@code java.util.spi.LocaleServiceProvider}</a> for more * information.</td> * </tr> * * <tr> * <th scope="row">loggerFinder</th> * <td>This {@code RuntimePermission} is required to be granted to * classes which subclass or call methods on * {@code java.lang.System.LoggerFinder}. The permission is * checked during invocation of the abstract base class constructor, as * well as on the invocation of its public methods. * This permission ensures trust in classes which provide loggers * to system classes.</td> * <td>See {@link java.lang.System.LoggerFinder java.lang.System.LoggerFinder} * for more information.</td> * </tr> * * <tr> * <th scope="row">accessSystemModules</th> * <td>Access system modules in the runtime image.</td> * <td>This grants the permission to access resources in the * {@linkplain ModuleFinder#ofSystem system modules} in the runtime image.</td> * </tr> * * </tbody> * </table> * * @implNote * Implementations may define additional target names, but should use naming * conventions such as reverse domain name notation to avoid name clashes. * * @see java.security.BasicPermission * @see java.security.Permission * @see java.security.Permissions * @see java.security.PermissionCollection * @see java.lang.SecurityManager * * * @author Marianne Mueller * @author Roland Schemers * @since 1.2 */ public final class RuntimePermission extends BasicPermission { @java.io.Serial private static final long serialVersionUID = 7399184964622342223L; /** * Creates a new RuntimePermission with the specified name. * The name is the symbolic name of the RuntimePermission, such as * "exit", "setFactory", etc. An asterisk * may appear at the end of the name, following a ".", or by itself, to * signify a wildcard match. * * @param name the name of the RuntimePermission. * * @throws NullPointerException if {@code name} is {@code null}. * @throws IllegalArgumentException if {@code name} is empty. */ public RuntimePermission(String name) { super(name); } /** * Creates a new RuntimePermission object with the specified name. * The name is the symbolic name of the RuntimePermission, and the * actions String is currently unused and should be null. * * @param name the name of the RuntimePermission. * @param actions should be null. * * @throws NullPointerException if {@code name} is {@code null}. * @throws IllegalArgumentException if {@code name} is empty. */ public RuntimePermission(String name, String actions) { super(name, actions); } }
⏎ java/lang/RuntimePermission.java
Or download all of them as a single archive file:
File name: java.base-17.0.5-src.zip File size: 8883851 bytes Release date: 2022-09-13 Download
2023-09-26, 93064👍, 1💬
Popular Posts:
GJT (Giant Java Tree) implementation of XML Pull Parser. JAR File Size and Download Location: File n...
Apache Log4j Core Implementation provides the functional components of the logging system. Users are...
Apache Commons Lang 3 is the 3rd version of Apache Commons Lang, which provides a host of helper uti...
XStream is a simple library to serialize objects to XML and back again. JAR File Size and Download L...
xml-commons Resolver Source Code Files are provided in the source package file, xml-commons-resolver...