Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (101)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (309)
Collections:
Other Resources:
JDK 17 java.base.jmod - Base Module
JDK 17 java.base.jmod is the JMOD file for JDK 17 Base module.
JDK 17 Base module compiled class files are stored in \fyicenter\jdk-17.0.5\jmods\java.base.jmod.
JDK 17 Base module compiled class files are also linked and stored in the \fyicenter\jdk-17.0.5\lib\modules JImage file.
JDK 17 Base module source code files are stored in \fyicenter\jdk-17.0.5\lib\src.zip\java.base.
You can click and view the content of each source code file in the list below.
✍: FYIcenter
⏎ java/lang/String.java
/* * Copyright (c) 1994, 2022, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.lang; import java.io.ObjectStreamField; import java.io.UnsupportedEncodingException; import java.lang.annotation.Native; import java.lang.invoke.MethodHandles; import java.lang.constant.Constable; import java.lang.constant.ConstantDesc; import java.nio.ByteBuffer; import java.nio.CharBuffer; import java.nio.charset.*; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.Formatter; import java.util.List; import java.util.Locale; import java.util.Objects; import java.util.Optional; import java.util.Spliterator; import java.util.function.Function; import java.util.regex.Pattern; import java.util.regex.PatternSyntaxException; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; import java.util.stream.StreamSupport; import jdk.internal.vm.annotation.ForceInline; import jdk.internal.vm.annotation.IntrinsicCandidate; import jdk.internal.vm.annotation.Stable; import sun.nio.cs.ArrayDecoder; import sun.nio.cs.ArrayEncoder; import sun.nio.cs.ISO_8859_1; import sun.nio.cs.US_ASCII; import sun.nio.cs.UTF_8; /** * The {@code String} class represents character strings. All * string literals in Java programs, such as {@code "abc"}, are * implemented as instances of this class. * <p> * Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: * <blockquote><pre> * String str = "abc"; * </pre></blockquote><p> * is equivalent to: * <blockquote><pre> * char data[] = {'a', 'b', 'c'}; * String str = new String(data); * </pre></blockquote><p> * Here are some more examples of how strings can be used: * <blockquote><pre> * System.out.println("abc"); * String cde = "cde"; * System.out.println("abc" + cde); * String c = "abc".substring(2, 3); * String d = cde.substring(1, 2); * </pre></blockquote> * <p> * The class {@code String} includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. * <p> * The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. For additional information on string * concatenation and conversion, see <i>The Java Language Specification</i>. * * <p> Unless otherwise noted, passing a {@code null} argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * * <p>A {@code String} represents a string in the UTF-16 format * in which <em>supplementary characters</em> are represented by <em>surrogate * pairs</em> (see the section <a href="Character.html#unicode">Unicode * Character Representations</a> in the {@code Character} class for * more information). * Index values refer to {@code char} code units, so a supplementary * character uses two positions in a {@code String}. * <p>The {@code String} class provides methods for dealing with * Unicode code points (i.e., characters), in addition to those for * dealing with Unicode code units (i.e., {@code char} values). * * <p>Unless otherwise noted, methods for comparing Strings do not take locale * into account. The {@link java.text.Collator} class provides methods for * finer-grain, locale-sensitive String comparison. * * @implNote The implementation of the string concatenation operator is left to * the discretion of a Java compiler, as long as the compiler ultimately conforms * to <i>The Java Language Specification</i>. For example, the {@code javac} compiler * may implement the operator with {@code StringBuffer}, {@code StringBuilder}, * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The * implementation of string conversion is typically through the method {@code toString}, * defined by {@code Object} and inherited by all classes in Java. * * @author Lee Boynton * @author Arthur van Hoff * @author Martin Buchholz * @author Ulf Zibis * @see java.lang.Object#toString() * @see java.lang.StringBuffer * @see java.lang.StringBuilder * @see java.nio.charset.Charset * @since 1.0 * @jls 15.18.1 String Concatenation Operator + */ public final class String implements java.io.Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc { /** * The value is used for character storage. * * @implNote This field is trusted by the VM, and is a subject to * constant folding if String instance is constant. Overwriting this * field after construction will cause problems. * * Additionally, it is marked with {@link Stable} to trust the contents * of the array. No other facility in JDK provides this functionality (yet). * {@link Stable} is safe here, because value is never null. */ @Stable private final byte[] value; /** * The identifier of the encoding used to encode the bytes in * {@code value}. The supported values in this implementation are * * LATIN1 * UTF16 * * @implNote This field is trusted by the VM, and is a subject to * constant folding if String instance is constant. Overwriting this * field after construction will cause problems. */ private final byte coder; /** Cache the hash code for the string */ private int hash; // Default to 0 /** * Cache if the hash has been calculated as actually being zero, enabling * us to avoid recalculating this. */ private boolean hashIsZero; // Default to false; /** use serialVersionUID from JDK 1.0.2 for interoperability */ @java.io.Serial private static final long serialVersionUID = -6849794470754667710L; /** * If String compaction is disabled, the bytes in {@code value} are * always encoded in UTF16. * * For methods with several possible implementation paths, when String * compaction is disabled, only one code path is taken. * * The instance field value is generally opaque to optimizing JIT * compilers. Therefore, in performance-sensitive place, an explicit * check of the static boolean {@code COMPACT_STRINGS} is done first * before checking the {@code coder} field since the static boolean * {@code COMPACT_STRINGS} would be constant folded away by an * optimizing JIT compiler. The idioms for these cases are as follows. * * For code such as: * * if (coder == LATIN1) { ... } * * can be written more optimally as * * if (coder() == LATIN1) { ... } * * or: * * if (COMPACT_STRINGS && coder == LATIN1) { ... } * * An optimizing JIT compiler can fold the above conditional as: * * COMPACT_STRINGS == true => if (coder == LATIN1) { ... } * COMPACT_STRINGS == false => if (false) { ... } * * @implNote * The actual value for this field is injected by JVM. The static * initialization block is used to set the value here to communicate * that this static final field is not statically foldable, and to * avoid any possible circular dependency during vm initialization. */ static final boolean COMPACT_STRINGS; static { COMPACT_STRINGS = true; } /** * Class String is special cased within the Serialization Stream Protocol. * * A String instance is written into an ObjectOutputStream according to * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements"> * Object Serialization Specification, Section 6.2, "Stream Elements"</a> */ @java.io.Serial private static final ObjectStreamField[] serialPersistentFields = new ObjectStreamField[0]; /** * Initializes a newly created {@code String} object so that it represents * an empty character sequence. Note that use of this constructor is * unnecessary since Strings are immutable. */ public String() { this.value = "".value; this.coder = "".coder; } /** * Initializes a newly created {@code String} object so that it represents * the same sequence of characters as the argument; in other words, the * newly created string is a copy of the argument string. Unless an * explicit copy of {@code original} is needed, use of this constructor is * unnecessary since Strings are immutable. * * @param original * A {@code String} */ @IntrinsicCandidate public String(String original) { this.value = original.value; this.coder = original.coder; this.hash = original.hash; } /** * Allocates a new {@code String} so that it represents the sequence of * characters currently contained in the character array argument. The * contents of the character array are copied; subsequent modification of * the character array does not affect the newly created string. * * @param value * The initial value of the string */ public String(char value[]) { this(value, 0, value.length, null); } /** * Allocates a new {@code String} that contains characters from a subarray * of the character array argument. The {@code offset} argument is the * index of the first character of the subarray and the {@code count} * argument specifies the length of the subarray. The contents of the * subarray are copied; subsequent modification of the character array does * not affect the newly created string. * * @param value * Array that is the source of characters * * @param offset * The initial offset * * @param count * The length * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code value.length - count} */ public String(char value[], int offset, int count) { this(value, offset, count, rangeCheck(value, offset, count)); } private static Void rangeCheck(char[] value, int offset, int count) { checkBoundsOffCount(offset, count, value.length); return null; } /** * Allocates a new {@code String} that contains characters from a subarray * of the <a href="Character.html#unicode">Unicode code point</a> array * argument. The {@code offset} argument is the index of the first code * point of the subarray and the {@code count} argument specifies the * length of the subarray. The contents of the subarray are converted to * {@code char}s; subsequent modification of the {@code int} array does not * affect the newly created string. * * @param codePoints * Array that is the source of Unicode code points * * @param offset * The initial offset * * @param count * The length * * @throws IllegalArgumentException * If any invalid Unicode code point is found in {@code * codePoints} * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code codePoints.length - count} * * @since 1.5 */ public String(int[] codePoints, int offset, int count) { checkBoundsOffCount(offset, count, codePoints.length); if (count == 0) { this.value = "".value; this.coder = "".coder; return; } if (COMPACT_STRINGS) { byte[] val = StringLatin1.toBytes(codePoints, offset, count); if (val != null) { this.coder = LATIN1; this.value = val; return; } } this.coder = UTF16; this.value = StringUTF16.toBytes(codePoints, offset, count); } /** * Allocates a new {@code String} constructed from a subarray of an array * of 8-bit integer values. * * <p> The {@code offset} argument is the index of the first byte of the * subarray, and the {@code count} argument specifies the length of the * subarray. * * <p> Each {@code byte} in the subarray is converted to a {@code char} as * specified in the {@link #String(byte[],int) String(byte[],int)} constructor. * * @deprecated This method does not properly convert bytes into characters. * As of JDK 1.1, the preferred way to do this is via the * {@code String} constructors that take a {@link * java.nio.charset.Charset}, charset name, or that use the platform's * default charset. * * @param ascii * The bytes to be converted to characters * * @param hibyte * The top 8 bits of each 16-bit Unicode code unit * * @param offset * The initial offset * @param count * The length * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, or * {@code offset} is greater than {@code ascii.length - count} * * @see #String(byte[], int) * @see #String(byte[], int, int, java.lang.String) * @see #String(byte[], int, int, java.nio.charset.Charset) * @see #String(byte[], int, int) * @see #String(byte[], java.lang.String) * @see #String(byte[], java.nio.charset.Charset) * @see #String(byte[]) */ @Deprecated(since="1.1") public String(byte ascii[], int hibyte, int offset, int count) { checkBoundsOffCount(offset, count, ascii.length); if (count == 0) { this.value = "".value; this.coder = "".coder; return; } if (COMPACT_STRINGS && (byte)hibyte == 0) { this.value = Arrays.copyOfRange(ascii, offset, offset + count); this.coder = LATIN1; } else { hibyte <<= 8; byte[] val = StringUTF16.newBytesFor(count); for (int i = 0; i < count; i++) { StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff)); } this.value = val; this.coder = UTF16; } } /** * Allocates a new {@code String} containing characters constructed from * an array of 8-bit integer values. Each character <i>c</i> in the * resulting string is constructed from the corresponding component * <i>b</i> in the byte array such that: * * <blockquote><pre> * <b><i>c</i></b> == (char)(((hibyte & 0xff) << 8) * | (<b><i>b</i></b> & 0xff)) * </pre></blockquote> * * @deprecated This method does not properly convert bytes into * characters. As of JDK 1.1, the preferred way to do this is via the * {@code String} constructors that take a {@link * java.nio.charset.Charset}, charset name, or that use the platform's * default charset. * * @param ascii * The bytes to be converted to characters * * @param hibyte * The top 8 bits of each 16-bit Unicode code unit * * @see #String(byte[], int, int, java.lang.String) * @see #String(byte[], int, int, java.nio.charset.Charset) * @see #String(byte[], int, int) * @see #String(byte[], java.lang.String) * @see #String(byte[], java.nio.charset.Charset) * @see #String(byte[]) */ @Deprecated(since="1.1") public String(byte ascii[], int hibyte) { this(ascii, hibyte, 0, ascii.length); } /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the specified charset. The length of the new {@code String} * is a function of the charset, and hence may not be equal to the length * of the subarray. * * <p> The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.1 */ public String(byte[] bytes, int offset, int length, String charsetName) throws UnsupportedEncodingException { this(bytes, offset, length, lookupCharset(charsetName)); } /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the specified {@linkplain java.nio.charset.Charset charset}. * The length of the new {@code String} is a function of the charset, and * hence may not be equal to the length of the subarray. * * <p> This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * * @param charset * The {@linkplain java.nio.charset.Charset charset} to be used to * decode the {@code bytes} * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.6 */ @SuppressWarnings("removal") public String(byte[] bytes, int offset, int length, Charset charset) { Objects.requireNonNull(charset); checkBoundsOffCount(offset, length, bytes.length); if (length == 0) { this.value = "".value; this.coder = "".coder; } else if (charset == UTF_8.INSTANCE) { if (COMPACT_STRINGS && !StringCoding.hasNegatives(bytes, offset, length)) { this.value = Arrays.copyOfRange(bytes, offset, offset + length); this.coder = LATIN1; } else { int sl = offset + length; int dp = 0; byte[] dst = null; if (COMPACT_STRINGS) { dst = new byte[length]; while (offset < sl) { int b1 = bytes[offset]; if (b1 >= 0) { dst[dp++] = (byte)b1; offset++; continue; } if ((b1 == (byte)0xc2 || b1 == (byte)0xc3) && offset + 1 < sl) { int b2 = bytes[offset + 1]; if (!isNotContinuation(b2)) { dst[dp++] = (byte)decode2(b1, b2); offset += 2; continue; } } // anything not a latin1, including the repl // we have to go with the utf16 break; } if (offset == sl) { if (dp != dst.length) { dst = Arrays.copyOf(dst, dp); } this.value = dst; this.coder = LATIN1; return; } } if (dp == 0 || dst == null) { dst = new byte[length << 1]; } else { byte[] buf = new byte[length << 1]; StringLatin1.inflate(dst, 0, buf, 0, dp); dst = buf; } dp = decodeUTF8_UTF16(bytes, offset, sl, dst, dp, true); if (dp != length) { dst = Arrays.copyOf(dst, dp << 1); } this.value = dst; this.coder = UTF16; } } else if (charset == ISO_8859_1.INSTANCE) { if (COMPACT_STRINGS) { this.value = Arrays.copyOfRange(bytes, offset, offset + length); this.coder = LATIN1; } else { this.value = StringLatin1.inflate(bytes, offset, length); this.coder = UTF16; } } else if (charset == US_ASCII.INSTANCE) { if (COMPACT_STRINGS && !StringCoding.hasNegatives(bytes, offset, length)) { this.value = Arrays.copyOfRange(bytes, offset, offset + length); this.coder = LATIN1; } else { byte[] dst = new byte[length << 1]; int dp = 0; while (dp < length) { int b = bytes[offset++]; StringUTF16.putChar(dst, dp++, (b >= 0) ? (char) b : REPL); } this.value = dst; this.coder = UTF16; } } else { // (1)We never cache the "external" cs, the only benefit of creating // an additional StringDe/Encoder object to wrap it is to share the // de/encode() method. These SD/E objects are short-lived, the young-gen // gc should be able to take care of them well. But the best approach // is still not to generate them if not really necessary. // (2)The defensive copy of the input byte/char[] has a big performance // impact, as well as the outgoing result byte/char[]. Need to do the // optimization check of (sm==null && classLoader0==null) for both. CharsetDecoder cd = charset.newDecoder(); // ArrayDecoder fastpaths if (cd instanceof ArrayDecoder ad) { // ascii if (ad.isASCIICompatible() && !StringCoding.hasNegatives(bytes, offset, length)) { if (COMPACT_STRINGS) { this.value = Arrays.copyOfRange(bytes, offset, offset + length); this.coder = LATIN1; return; } this.value = StringLatin1.inflate(bytes, offset, length); this.coder = UTF16; return; } // fastpath for always Latin1 decodable single byte if (COMPACT_STRINGS && ad.isLatin1Decodable()) { byte[] dst = new byte[length]; ad.decodeToLatin1(bytes, offset, length, dst); this.value = dst; this.coder = LATIN1; return; } int en = scale(length, cd.maxCharsPerByte()); cd.onMalformedInput(CodingErrorAction.REPLACE) .onUnmappableCharacter(CodingErrorAction.REPLACE); char[] ca = new char[en]; int clen = ad.decode(bytes, offset, length, ca); if (COMPACT_STRINGS) { byte[] bs = StringUTF16.compress(ca, 0, clen); if (bs != null) { value = bs; coder = LATIN1; return; } } coder = UTF16; value = StringUTF16.toBytes(ca, 0, clen); return; } // decode using CharsetDecoder int en = scale(length, cd.maxCharsPerByte()); cd.onMalformedInput(CodingErrorAction.REPLACE) .onUnmappableCharacter(CodingErrorAction.REPLACE); char[] ca = new char[en]; if (charset.getClass().getClassLoader0() != null && System.getSecurityManager() != null) { bytes = Arrays.copyOfRange(bytes, offset, offset + length); offset = 0; } int caLen = decodeWithDecoder(cd, ca, bytes, offset, length); if (COMPACT_STRINGS) { byte[] bs = StringUTF16.compress(ca, 0, caLen); if (bs != null) { value = bs; coder = LATIN1; return; } } coder = UTF16; value = StringUTF16.toBytes(ca, 0, caLen); } } /* * Throws iae, instead of replacing, if malformed or unmappable. */ static String newStringUTF8NoRepl(byte[] bytes, int offset, int length) { checkBoundsOffCount(offset, length, bytes.length); if (length == 0) { return ""; } if (COMPACT_STRINGS && !StringCoding.hasNegatives(bytes, offset, length)) { return new String(Arrays.copyOfRange(bytes, offset, offset + length), LATIN1); } else { int sl = offset + length; int dp = 0; byte[] dst = null; if (COMPACT_STRINGS) { dst = new byte[length]; while (offset < sl) { int b1 = bytes[offset]; if (b1 >= 0) { dst[dp++] = (byte) b1; offset++; continue; } if ((b1 == (byte) 0xc2 || b1 == (byte) 0xc3) && offset + 1 < sl) { int b2 = bytes[offset + 1]; if (!isNotContinuation(b2)) { dst[dp++] = (byte) decode2(b1, b2); offset += 2; continue; } } // anything not a latin1, including the REPL // we have to go with the utf16 break; } if (offset == sl) { if (dp != dst.length) { dst = Arrays.copyOf(dst, dp); } return new String(dst, LATIN1); } } if (dp == 0 || dst == null) { dst = new byte[length << 1]; } else { byte[] buf = new byte[length << 1]; StringLatin1.inflate(dst, 0, buf, 0, dp); dst = buf; } dp = decodeUTF8_UTF16(bytes, offset, sl, dst, dp, false); if (dp != length) { dst = Arrays.copyOf(dst, dp << 1); } return new String(dst, UTF16); } } static String newStringNoRepl(byte[] src, Charset cs) throws CharacterCodingException { try { return newStringNoRepl1(src, cs); } catch (IllegalArgumentException e) { //newStringNoRepl1 throws IAE with MalformedInputException or CCE as the cause Throwable cause = e.getCause(); if (cause instanceof MalformedInputException mie) { throw mie; } throw (CharacterCodingException)cause; } } @SuppressWarnings("removal") private static String newStringNoRepl1(byte[] src, Charset cs) { int len = src.length; if (len == 0) { return ""; } if (cs == UTF_8.INSTANCE) { return newStringUTF8NoRepl(src, 0, src.length); } if (cs == ISO_8859_1.INSTANCE) { if (COMPACT_STRINGS) return new String(src, LATIN1); return new String(StringLatin1.inflate(src, 0, src.length), UTF16); } if (cs == US_ASCII.INSTANCE) { if (!StringCoding.hasNegatives(src, 0, src.length)) { if (COMPACT_STRINGS) return new String(src, LATIN1); return new String(StringLatin1.inflate(src, 0, src.length), UTF16); } else { throwMalformed(src); } } CharsetDecoder cd = cs.newDecoder(); // ascii fastpath if (cd instanceof ArrayDecoder ad && ad.isASCIICompatible() && !StringCoding.hasNegatives(src, 0, src.length)) { return new String(src, 0, src.length, ISO_8859_1.INSTANCE); } int en = scale(len, cd.maxCharsPerByte()); char[] ca = new char[en]; if (cs.getClass().getClassLoader0() != null && System.getSecurityManager() != null) { src = Arrays.copyOf(src, len); } int caLen = decodeWithDecoder(cd, ca, src, 0, src.length); if (COMPACT_STRINGS) { byte[] bs = StringUTF16.compress(ca, 0, caLen); if (bs != null) { return new String(bs, LATIN1); } } return new String(StringUTF16.toBytes(ca, 0, caLen), UTF16); } private static final char REPL = '\ufffd'; // Trim the given byte array to the given length @SuppressWarnings("removal") private static byte[] safeTrim(byte[] ba, int len, boolean isTrusted) { if (len == ba.length && (isTrusted || System.getSecurityManager() == null)) { return ba; } else { return Arrays.copyOf(ba, len); } } private static int scale(int len, float expansionFactor) { // We need to perform double, not float, arithmetic; otherwise // we lose low order bits when len is larger than 2**24. return (int)(len * (double)expansionFactor); } private static Charset lookupCharset(String csn) throws UnsupportedEncodingException { Objects.requireNonNull(csn); try { return Charset.forName(csn); } catch (UnsupportedCharsetException | IllegalCharsetNameException x) { throw new UnsupportedEncodingException(csn); } } private static byte[] encode(Charset cs, byte coder, byte[] val) { if (cs == UTF_8.INSTANCE) { return encodeUTF8(coder, val, true); } if (cs == ISO_8859_1.INSTANCE) { return encode8859_1(coder, val); } if (cs == US_ASCII.INSTANCE) { return encodeASCII(coder, val); } return encodeWithEncoder(cs, coder, val, true); } private static byte[] encodeWithEncoder(Charset cs, byte coder, byte[] val, boolean doReplace) { CharsetEncoder ce = cs.newEncoder(); int len = val.length >> coder; // assume LATIN1=0/UTF16=1; int en = scale(len, ce.maxBytesPerChar()); if (ce instanceof ArrayEncoder ae) { // fastpath for ascii compatible if (coder == LATIN1 && ae.isASCIICompatible() && !StringCoding.hasNegatives(val, 0, val.length)) { return Arrays.copyOf(val, val.length); } byte[] ba = new byte[en]; if (len == 0) { return ba; } if (doReplace) { ce.onMalformedInput(CodingErrorAction.REPLACE) .onUnmappableCharacter(CodingErrorAction.REPLACE); } int blen = (coder == LATIN1) ? ae.encodeFromLatin1(val, 0, len, ba) : ae.encodeFromUTF16(val, 0, len, ba); if (blen != -1) { return safeTrim(ba, blen, true); } } byte[] ba = new byte[en]; if (len == 0) { return ba; } if (doReplace) { ce.onMalformedInput(CodingErrorAction.REPLACE) .onUnmappableCharacter(CodingErrorAction.REPLACE); } char[] ca = (coder == LATIN1 ) ? StringLatin1.toChars(val) : StringUTF16.toChars(val); ByteBuffer bb = ByteBuffer.wrap(ba); CharBuffer cb = CharBuffer.wrap(ca, 0, len); try { CoderResult cr = ce.encode(cb, bb, true); if (!cr.isUnderflow()) cr.throwException(); cr = ce.flush(bb); if (!cr.isUnderflow()) cr.throwException(); } catch (CharacterCodingException x) { if (!doReplace) { throw new IllegalArgumentException(x); } else { throw new Error(x); } } return safeTrim(ba, bb.position(), cs.getClass().getClassLoader0() == null); } /* * Throws iae, instead of replacing, if unmappable. */ static byte[] getBytesUTF8NoRepl(String s) { return encodeUTF8(s.coder(), s.value(), false); } private static boolean isASCII(byte[] src) { return !StringCoding.hasNegatives(src, 0, src.length); } /* * Throws CCE, instead of replacing, if unmappable. */ static byte[] getBytesNoRepl(String s, Charset cs) throws CharacterCodingException { try { return getBytesNoRepl1(s, cs); } catch (IllegalArgumentException e) { //getBytesNoRepl1 throws IAE with UnmappableCharacterException or CCE as the cause Throwable cause = e.getCause(); if (cause instanceof UnmappableCharacterException) { throw (UnmappableCharacterException)cause; } throw (CharacterCodingException)cause; } } private static byte[] getBytesNoRepl1(String s, Charset cs) { byte[] val = s.value(); byte coder = s.coder(); if (cs == UTF_8.INSTANCE) { if (coder == LATIN1 && isASCII(val)) { return val; } return encodeUTF8(coder, val, false); } if (cs == ISO_8859_1.INSTANCE) { if (coder == LATIN1) { return val; } return encode8859_1(coder, val, false); } if (cs == US_ASCII.INSTANCE) { if (coder == LATIN1) { if (isASCII(val)) { return val; } else { throwUnmappable(val); } } } return encodeWithEncoder(cs, coder, val, false); } private static byte[] encodeASCII(byte coder, byte[] val) { if (coder == LATIN1) { byte[] dst = Arrays.copyOf(val, val.length); for (int i = 0; i < dst.length; i++) { if (dst[i] < 0) { dst[i] = '?'; } } return dst; } int len = val.length >> 1; byte[] dst = new byte[len]; int dp = 0; for (int i = 0; i < len; i++) { char c = StringUTF16.getChar(val, i); if (c < 0x80) { dst[dp++] = (byte)c; continue; } if (Character.isHighSurrogate(c) && i + 1 < len && Character.isLowSurrogate(StringUTF16.getChar(val, i + 1))) { i++; } dst[dp++] = '?'; } if (len == dp) { return dst; } return Arrays.copyOf(dst, dp); } private static byte[] encode8859_1(byte coder, byte[] val) { return encode8859_1(coder, val, true); } private static byte[] encode8859_1(byte coder, byte[] val, boolean doReplace) { if (coder == LATIN1) { return Arrays.copyOf(val, val.length); } int len = val.length >> 1; byte[] dst = new byte[len]; int dp = 0; int sp = 0; int sl = len; while (sp < sl) { int ret = StringCoding.implEncodeISOArray(val, sp, dst, dp, len); sp = sp + ret; dp = dp + ret; if (ret != len) { if (!doReplace) { throwUnmappable(sp); } char c = StringUTF16.getChar(val, sp++); if (Character.isHighSurrogate(c) && sp < sl && Character.isLowSurrogate(StringUTF16.getChar(val, sp))) { sp++; } dst[dp++] = '?'; len = sl - sp; } } if (dp == dst.length) { return dst; } return Arrays.copyOf(dst, dp); } //////////////////////////////// utf8 //////////////////////////////////// /** * Decodes ASCII from the source byte array into the destination * char array. Used via JavaLangAccess from UTF_8 and other charset * decoders. * * @return the number of bytes successfully decoded, at most len */ /* package-private */ static int decodeASCII(byte[] sa, int sp, char[] da, int dp, int len) { if (!StringCoding.hasNegatives(sa, sp, len)) { StringLatin1.inflate(sa, sp, da, dp, len); return len; } else { int start = sp; int end = sp + len; while (sp < end && sa[sp] >= 0) { da[dp++] = (char) sa[sp++]; } return sp - start; } } private static boolean isNotContinuation(int b) { return (b & 0xc0) != 0x80; } private static boolean isMalformed3(int b1, int b2, int b3) { return (b1 == (byte)0xe0 && (b2 & 0xe0) == 0x80) || (b2 & 0xc0) != 0x80 || (b3 & 0xc0) != 0x80; } private static boolean isMalformed3_2(int b1, int b2) { return (b1 == (byte)0xe0 && (b2 & 0xe0) == 0x80) || (b2 & 0xc0) != 0x80; } private static boolean isMalformed4(int b2, int b3, int b4) { return (b2 & 0xc0) != 0x80 || (b3 & 0xc0) != 0x80 || (b4 & 0xc0) != 0x80; } private static boolean isMalformed4_2(int b1, int b2) { return (b1 == 0xf0 && (b2 < 0x90 || b2 > 0xbf)) || (b1 == 0xf4 && (b2 & 0xf0) != 0x80) || (b2 & 0xc0) != 0x80; } private static boolean isMalformed4_3(int b3) { return (b3 & 0xc0) != 0x80; } private static char decode2(int b1, int b2) { return (char)(((b1 << 6) ^ b2) ^ (((byte) 0xC0 << 6) ^ ((byte) 0x80 << 0))); } private static char decode3(int b1, int b2, int b3) { return (char)((b1 << 12) ^ (b2 << 6) ^ (b3 ^ (((byte) 0xE0 << 12) ^ ((byte) 0x80 << 6) ^ ((byte) 0x80 << 0)))); } private static int decode4(int b1, int b2, int b3, int b4) { return ((b1 << 18) ^ (b2 << 12) ^ (b3 << 6) ^ (b4 ^ (((byte) 0xF0 << 18) ^ ((byte) 0x80 << 12) ^ ((byte) 0x80 << 6) ^ ((byte) 0x80 << 0)))); } private static int decodeUTF8_UTF16(byte[] src, int sp, int sl, byte[] dst, int dp, boolean doReplace) { while (sp < sl) { int b1 = src[sp++]; if (b1 >= 0) { StringUTF16.putChar(dst, dp++, (char) b1); } else if ((b1 >> 5) == -2 && (b1 & 0x1e) != 0) { if (sp < sl) { int b2 = src[sp++]; if (isNotContinuation(b2)) { if (!doReplace) { throwMalformed(sp - 1, 1); } StringUTF16.putChar(dst, dp++, REPL); sp--; } else { StringUTF16.putChar(dst, dp++, decode2(b1, b2)); } continue; } if (!doReplace) { throwMalformed(sp, 1); // underflow() } StringUTF16.putChar(dst, dp++, REPL); break; } else if ((b1 >> 4) == -2) { if (sp + 1 < sl) { int b2 = src[sp++]; int b3 = src[sp++]; if (isMalformed3(b1, b2, b3)) { if (!doReplace) { throwMalformed(sp - 3, 3); } StringUTF16.putChar(dst, dp++, REPL); sp -= 3; sp += malformed3(src, sp); } else { char c = decode3(b1, b2, b3); if (Character.isSurrogate(c)) { if (!doReplace) { throwMalformed(sp - 3, 3); } StringUTF16.putChar(dst, dp++, REPL); } else { StringUTF16.putChar(dst, dp++, c); } } continue; } if (sp < sl && isMalformed3_2(b1, src[sp])) { if (!doReplace) { throwMalformed(sp - 1, 2); } StringUTF16.putChar(dst, dp++, REPL); continue; } if (!doReplace) { throwMalformed(sp, 1); } StringUTF16.putChar(dst, dp++, REPL); break; } else if ((b1 >> 3) == -2) { if (sp + 2 < sl) { int b2 = src[sp++]; int b3 = src[sp++]; int b4 = src[sp++]; int uc = decode4(b1, b2, b3, b4); if (isMalformed4(b2, b3, b4) || !Character.isSupplementaryCodePoint(uc)) { // shortest form check if (!doReplace) { throwMalformed(sp - 4, 4); } StringUTF16.putChar(dst, dp++, REPL); sp -= 4; sp += malformed4(src, sp); } else { StringUTF16.putChar(dst, dp++, Character.highSurrogate(uc)); StringUTF16.putChar(dst, dp++, Character.lowSurrogate(uc)); } continue; } b1 &= 0xff; if (b1 > 0xf4 || sp < sl && isMalformed4_2(b1, src[sp] & 0xff)) { if (!doReplace) { throwMalformed(sp - 1, 1); // or 2 } StringUTF16.putChar(dst, dp++, REPL); continue; } if (!doReplace) { throwMalformed(sp - 1, 1); } sp++; StringUTF16.putChar(dst, dp++, REPL); if (sp < sl && isMalformed4_3(src[sp])) { continue; } break; } else { if (!doReplace) { throwMalformed(sp - 1, 1); } StringUTF16.putChar(dst, dp++, REPL); } } return dp; } private static int decodeWithDecoder(CharsetDecoder cd, char[] dst, byte[] src, int offset, int length) { ByteBuffer bb = ByteBuffer.wrap(src, offset, length); CharBuffer cb = CharBuffer.wrap(dst, 0, dst.length); try { CoderResult cr = cd.decode(bb, cb, true); if (!cr.isUnderflow()) cr.throwException(); cr = cd.flush(cb); if (!cr.isUnderflow()) cr.throwException(); } catch (CharacterCodingException x) { // Substitution is always enabled, // so this shouldn't happen throw new Error(x); } return cb.position(); } private static int malformed3(byte[] src, int sp) { int b1 = src[sp++]; int b2 = src[sp]; // no need to lookup b3 return ((b1 == (byte)0xe0 && (b2 & 0xe0) == 0x80) || isNotContinuation(b2)) ? 1 : 2; } private static int malformed4(byte[] src, int sp) { // we don't care the speed here int b1 = src[sp++] & 0xff; int b2 = src[sp++] & 0xff; if (b1 > 0xf4 || (b1 == 0xf0 && (b2 < 0x90 || b2 > 0xbf)) || (b1 == 0xf4 && (b2 & 0xf0) != 0x80) || isNotContinuation(b2)) return 1; if (isNotContinuation(src[sp])) return 2; return 3; } private static void throwMalformed(int off, int nb) { String msg = "malformed input off : " + off + ", length : " + nb; throw new IllegalArgumentException(msg, new MalformedInputException(nb)); } private static void throwMalformed(byte[] val) { int dp = 0; while (dp < val.length && val[dp] >=0) { dp++; } throwMalformed(dp, 1); } private static void throwUnmappable(int off) { String msg = "malformed input off : " + off + ", length : 1"; throw new IllegalArgumentException(msg, new UnmappableCharacterException(1)); } private static void throwUnmappable(byte[] val) { int dp = 0; while (dp < val.length && val[dp] >=0) { dp++; } throwUnmappable(dp); } private static byte[] encodeUTF8(byte coder, byte[] val, boolean doReplace) { if (coder == UTF16) return encodeUTF8_UTF16(val, doReplace); if (!StringCoding.hasNegatives(val, 0, val.length)) return Arrays.copyOf(val, val.length); int dp = 0; byte[] dst = new byte[val.length << 1]; for (byte c : val) { if (c < 0) { dst[dp++] = (byte) (0xc0 | ((c & 0xff) >> 6)); dst[dp++] = (byte) (0x80 | (c & 0x3f)); } else { dst[dp++] = c; } } if (dp == dst.length) return dst; return Arrays.copyOf(dst, dp); } private static byte[] encodeUTF8_UTF16(byte[] val, boolean doReplace) { int dp = 0; int sp = 0; int sl = val.length >> 1; byte[] dst = new byte[sl * 3]; while (sp < sl) { // ascii fast loop; char c = StringUTF16.getChar(val, sp); if (c >= '\u0080') { break; } dst[dp++] = (byte)c; sp++; } while (sp < sl) { char c = StringUTF16.getChar(val, sp++); if (c < 0x80) { dst[dp++] = (byte)c; } else if (c < 0x800) { dst[dp++] = (byte)(0xc0 | (c >> 6)); dst[dp++] = (byte)(0x80 | (c & 0x3f)); } else if (Character.isSurrogate(c)) { int uc = -1; char c2; if (Character.isHighSurrogate(c) && sp < sl && Character.isLowSurrogate(c2 = StringUTF16.getChar(val, sp))) { uc = Character.toCodePoint(c, c2); } if (uc < 0) { if (doReplace) { dst[dp++] = '?'; } else { throwUnmappable(sp - 1); } } else { dst[dp++] = (byte)(0xf0 | ((uc >> 18))); dst[dp++] = (byte)(0x80 | ((uc >> 12) & 0x3f)); dst[dp++] = (byte)(0x80 | ((uc >> 6) & 0x3f)); dst[dp++] = (byte)(0x80 | (uc & 0x3f)); sp++; // 2 chars } } else { // 3 bytes, 16 bits dst[dp++] = (byte)(0xe0 | ((c >> 12))); dst[dp++] = (byte)(0x80 | ((c >> 6) & 0x3f)); dst[dp++] = (byte)(0x80 | (c & 0x3f)); } } if (dp == dst.length) { return dst; } return Arrays.copyOf(dst, dp); } /** * Constructs a new {@code String} by decoding the specified array of bytes * using the specified {@linkplain java.nio.charset.Charset charset}. The * length of the new {@code String} is a function of the charset, and hence * may not be equal to the length of the byte array. * * <p> The behavior of this constructor when the given bytes are not valid * in the given charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported * * @since 1.1 */ public String(byte bytes[], String charsetName) throws UnsupportedEncodingException { this(bytes, 0, bytes.length, charsetName); } /** * Constructs a new {@code String} by decoding the specified array of * bytes using the specified {@linkplain java.nio.charset.Charset charset}. * The length of the new {@code String} is a function of the charset, and * hence may not be equal to the length of the byte array. * * <p> This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement string. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param charset * The {@linkplain java.nio.charset.Charset charset} to be used to * decode the {@code bytes} * * @since 1.6 */ public String(byte bytes[], Charset charset) { this(bytes, 0, bytes.length, charset); } /** * Constructs a new {@code String} by decoding the specified subarray of * bytes using the platform's default charset. The length of the new * {@code String} is a function of the charset, and hence may not be equal * to the length of the subarray. * * <p> The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @param offset * The index of the first byte to decode * * @param length * The number of bytes to decode * * @throws IndexOutOfBoundsException * If {@code offset} is negative, {@code length} is negative, or * {@code offset} is greater than {@code bytes.length - length} * * @since 1.1 */ public String(byte[] bytes, int offset, int length) { this(bytes, offset, length, Charset.defaultCharset()); } /** * Constructs a new {@code String} by decoding the specified array of bytes * using the platform's default charset. The length of the new {@code * String} is a function of the charset, and hence may not be equal to the * length of the byte array. * * <p> The behavior of this constructor when the given bytes are not valid * in the default charset is unspecified. The {@link * java.nio.charset.CharsetDecoder} class should be used when more control * over the decoding process is required. * * @param bytes * The bytes to be decoded into characters * * @since 1.1 */ public String(byte[] bytes) { this(bytes, 0, bytes.length); } /** * Allocates a new string that contains the sequence of characters * currently contained in the string buffer argument. The contents of the * string buffer are copied; subsequent modification of the string buffer * does not affect the newly created string. * * @param buffer * A {@code StringBuffer} */ public String(StringBuffer buffer) { this(buffer.toString()); } /** * Allocates a new string that contains the sequence of characters * currently contained in the string builder argument. The contents of the * string builder are copied; subsequent modification of the string builder * does not affect the newly created string. * * <p> This constructor is provided to ease migration to {@code * StringBuilder}. Obtaining a string from a string builder via the {@code * toString} method is likely to run faster and is generally preferred. * * @param builder * A {@code StringBuilder} * * @since 1.5 */ public String(StringBuilder builder) { this(builder, null); } /** * Returns the length of this string. * The length is equal to the number of <a href="Character.html#unicode">Unicode * code units</a> in the string. * * @return the length of the sequence of characters represented by this * object. */ public int length() { return value.length >> coder(); } /** * Returns {@code true} if, and only if, {@link #length()} is {@code 0}. * * @return {@code true} if {@link #length()} is {@code 0}, otherwise * {@code false} * * @since 1.6 */ @Override public boolean isEmpty() { return value.length == 0; } /** * Returns the {@code char} value at the * specified index. An index ranges from {@code 0} to * {@code length() - 1}. The first {@code char} value of the sequence * is at index {@code 0}, the next at index {@code 1}, * and so on, as for array indexing. * * <p>If the {@code char} value specified by the index is a * <a href="Character.html#unicode">surrogate</a>, the surrogate * value is returned. * * @param index the index of the {@code char} value. * @return the {@code char} value at the specified index of this string. * The first {@code char} value is at index {@code 0}. * @throws IndexOutOfBoundsException if the {@code index} * argument is negative or not less than the length of this * string. */ public char charAt(int index) { if (isLatin1()) { return StringLatin1.charAt(value, index); } else { return StringUTF16.charAt(value, index); } } /** * Returns the character (Unicode code point) at the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 0} to * {@link #length()}{@code - 1}. * * <p> If the {@code char} value specified at the given index * is in the high-surrogate range, the following index is less * than the length of this {@code String}, and the * {@code char} value at the following index is in the * low-surrogate range, then the supplementary code point * corresponding to this surrogate pair is returned. Otherwise, * the {@code char} value at the given index is returned. * * @param index the index to the {@code char} values * @return the code point value of the character at the * {@code index} * @throws IndexOutOfBoundsException if the {@code index} * argument is negative or not less than the length of this * string. * @since 1.5 */ public int codePointAt(int index) { if (isLatin1()) { checkIndex(index, value.length); return value[index] & 0xff; } int length = value.length >> 1; checkIndex(index, length); return StringUTF16.codePointAt(value, index, length); } /** * Returns the character (Unicode code point) before the specified * index. The index refers to {@code char} values * (Unicode code units) and ranges from {@code 1} to {@link * CharSequence#length() length}. * * <p> If the {@code char} value at {@code (index - 1)} * is in the low-surrogate range, {@code (index - 2)} is not * negative, and the {@code char} value at {@code (index - * 2)} is in the high-surrogate range, then the * supplementary code point value of the surrogate pair is * returned. If the {@code char} value at {@code index - * 1} is an unpaired low-surrogate or a high-surrogate, the * surrogate value is returned. * * @param index the index following the code point that should be returned * @return the Unicode code point value before the given index. * @throws IndexOutOfBoundsException if the {@code index} * argument is less than 1 or greater than the length * of this string. * @since 1.5 */ public int codePointBefore(int index) { int i = index - 1; if (i < 0 || i >= length()) { throw new StringIndexOutOfBoundsException(index); } if (isLatin1()) { return (value[i] & 0xff); } return StringUTF16.codePointBefore(value, index); } /** * Returns the number of Unicode code points in the specified text * range of this {@code String}. The text range begins at the * specified {@code beginIndex} and extends to the * {@code char} at index {@code endIndex - 1}. Thus the * length (in {@code char}s) of the text range is * {@code endIndex-beginIndex}. Unpaired surrogates within * the text range count as one code point each. * * @param beginIndex the index to the first {@code char} of * the text range. * @param endIndex the index after the last {@code char} of * the text range. * @return the number of Unicode code points in the specified text * range * @throws IndexOutOfBoundsException if the * {@code beginIndex} is negative, or {@code endIndex} * is larger than the length of this {@code String}, or * {@code beginIndex} is larger than {@code endIndex}. * @since 1.5 */ public int codePointCount(int beginIndex, int endIndex) { if (beginIndex < 0 || beginIndex > endIndex || endIndex > length()) { throw new IndexOutOfBoundsException(); } if (isLatin1()) { return endIndex - beginIndex; } return StringUTF16.codePointCount(value, beginIndex, endIndex); } /** * Returns the index within this {@code String} that is * offset from the given {@code index} by * {@code codePointOffset} code points. Unpaired surrogates * within the text range given by {@code index} and * {@code codePointOffset} count as one code point each. * * @param index the index to be offset * @param codePointOffset the offset in code points * @return the index within this {@code String} * @throws IndexOutOfBoundsException if {@code index} * is negative or larger then the length of this * {@code String}, or if {@code codePointOffset} is positive * and the substring starting with {@code index} has fewer * than {@code codePointOffset} code points, * or if {@code codePointOffset} is negative and the substring * before {@code index} has fewer than the absolute value * of {@code codePointOffset} code points. * @since 1.5 */ public int offsetByCodePoints(int index, int codePointOffset) { if (index < 0 || index > length()) { throw new IndexOutOfBoundsException(); } return Character.offsetByCodePoints(this, index, codePointOffset); } /** * Copies characters from this string into the destination character * array. * <p> * The first character to be copied is at index {@code srcBegin}; * the last character to be copied is at index {@code srcEnd-1} * (thus the total number of characters to be copied is * {@code srcEnd-srcBegin}). The characters are copied into the * subarray of {@code dst} starting at index {@code dstBegin} * and ending at index: * <blockquote><pre> * dstBegin + (srcEnd-srcBegin) - 1 * </pre></blockquote> * * @param srcBegin index of the first character in the string * to copy. * @param srcEnd index after the last character in the string * to copy. * @param dst the destination array. * @param dstBegin the start offset in the destination array. * @throws IndexOutOfBoundsException If any of the following * is true: * <ul><li>{@code srcBegin} is negative. * <li>{@code srcBegin} is greater than {@code srcEnd} * <li>{@code srcEnd} is greater than the length of this * string * <li>{@code dstBegin} is negative * <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than * {@code dst.length}</ul> */ public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) { checkBoundsBeginEnd(srcBegin, srcEnd, length()); checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length); if (isLatin1()) { StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin); } else { StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin); } } /** * Copies characters from this string into the destination byte array. Each * byte receives the 8 low-order bits of the corresponding character. The * eight high-order bits of each character are not copied and do not * participate in the transfer in any way. * * <p> The first character to be copied is at index {@code srcBegin}; the * last character to be copied is at index {@code srcEnd-1}. The total * number of characters to be copied is {@code srcEnd-srcBegin}. The * characters, converted to bytes, are copied into the subarray of {@code * dst} starting at index {@code dstBegin} and ending at index: * * <blockquote><pre> * dstBegin + (srcEnd-srcBegin) - 1 * </pre></blockquote> * * @deprecated This method does not properly convert characters into * bytes. As of JDK 1.1, the preferred way to do this is via the * {@link #getBytes()} method, which uses the platform's default charset. * * @param srcBegin * Index of the first character in the string to copy * * @param srcEnd * Index after the last character in the string to copy * * @param dst * The destination array * * @param dstBegin * The start offset in the destination array * * @throws IndexOutOfBoundsException * If any of the following is true: * <ul> * <li> {@code srcBegin} is negative * <li> {@code srcBegin} is greater than {@code srcEnd} * <li> {@code srcEnd} is greater than the length of this String * <li> {@code dstBegin} is negative * <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code * dst.length} * </ul> */ @Deprecated(since="1.1") public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) { checkBoundsBeginEnd(srcBegin, srcEnd, length()); Objects.requireNonNull(dst); checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length); if (isLatin1()) { StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin); } else { StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin); } } /** * Encodes this {@code String} into a sequence of bytes using the named * charset, storing the result into a new byte array. * * <p> The behavior of this method when this string cannot be encoded in * the given charset is unspecified. The {@link * java.nio.charset.CharsetEncoder} class should be used when more control * over the encoding process is required. * * @param charsetName * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @return The resultant byte array * * @throws UnsupportedEncodingException * If the named charset is not supported * * @since 1.1 */ public byte[] getBytes(String charsetName) throws UnsupportedEncodingException { if (charsetName == null) throw new NullPointerException(); return encode(lookupCharset(charsetName), coder(), value); } /** * Encodes this {@code String} into a sequence of bytes using the given * {@linkplain java.nio.charset.Charset charset}, storing the result into a * new byte array. * * <p> This method always replaces malformed-input and unmappable-character * sequences with this charset's default replacement byte array. The * {@link java.nio.charset.CharsetEncoder} class should be used when more * control over the encoding process is required. * * @param charset * The {@linkplain java.nio.charset.Charset} to be used to encode * the {@code String} * * @return The resultant byte array * * @since 1.6 */ public byte[] getBytes(Charset charset) { if (charset == null) throw new NullPointerException(); return encode(charset, coder(), value); } /** * Encodes this {@code String} into a sequence of bytes using the * platform's default charset, storing the result into a new byte array. * * <p> The behavior of this method when this string cannot be encoded in * the default charset is unspecified. The {@link * java.nio.charset.CharsetEncoder} class should be used when more control * over the encoding process is required. * * @return The resultant byte array * * @since 1.1 */ public byte[] getBytes() { return encode(Charset.defaultCharset(), coder(), value); } /** * Compares this string to the specified object. The result is {@code * true} if and only if the argument is not {@code null} and is a {@code * String} object that represents the same sequence of characters as this * object. * * <p>For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param anObject * The object to compare this {@code String} against * * @return {@code true} if the given object represents a {@code String} * equivalent to this string, {@code false} otherwise * * @see #compareTo(String) * @see #equalsIgnoreCase(String) */ public boolean equals(Object anObject) { if (this == anObject) { return true; } return (anObject instanceof String aString) && (!COMPACT_STRINGS || this.coder == aString.coder) && StringLatin1.equals(value, aString.value); } /** * Compares this string to the specified {@code StringBuffer}. The result * is {@code true} if and only if this {@code String} represents the same * sequence of characters as the specified {@code StringBuffer}. This method * synchronizes on the {@code StringBuffer}. * * <p>For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param sb * The {@code StringBuffer} to compare this {@code String} against * * @return {@code true} if this {@code String} represents the same * sequence of characters as the specified {@code StringBuffer}, * {@code false} otherwise * * @since 1.4 */ public boolean contentEquals(StringBuffer sb) { return contentEquals((CharSequence)sb); } private boolean nonSyncContentEquals(AbstractStringBuilder sb) { int len = length(); if (len != sb.length()) { return false; } byte v1[] = value; byte v2[] = sb.getValue(); byte coder = coder(); if (coder == sb.getCoder()) { int n = v1.length; for (int i = 0; i < n; i++) { if (v1[i] != v2[i]) { return false; } } } else { if (coder != LATIN1) { // utf16 str and latin1 abs can never be "equal" return false; } return StringUTF16.contentEquals(v1, v2, len); } return true; } /** * Compares this string to the specified {@code CharSequence}. The * result is {@code true} if and only if this {@code String} represents the * same sequence of char values as the specified sequence. Note that if the * {@code CharSequence} is a {@code StringBuffer} then the method * synchronizes on it. * * <p>For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param cs * The sequence to compare this {@code String} against * * @return {@code true} if this {@code String} represents the same * sequence of char values as the specified sequence, {@code * false} otherwise * * @since 1.5 */ public boolean contentEquals(CharSequence cs) { // Argument is a StringBuffer, StringBuilder if (cs instanceof AbstractStringBuilder) { if (cs instanceof StringBuffer) { synchronized(cs) { return nonSyncContentEquals((AbstractStringBuilder)cs); } } else { return nonSyncContentEquals((AbstractStringBuilder)cs); } } // Argument is a String if (cs instanceof String) { return equals(cs); } // Argument is a generic CharSequence int n = cs.length(); if (n != length()) { return false; } byte[] val = this.value; if (isLatin1()) { for (int i = 0; i < n; i++) { if ((val[i] & 0xff) != cs.charAt(i)) { return false; } } } else { if (!StringUTF16.contentEquals(val, cs, n)) { return false; } } return true; } /** * Compares this {@code String} to another {@code String}, ignoring case * considerations. Two strings are considered equal ignoring case if they * are of the same length and corresponding Unicode code points in the two * strings are equal ignoring case. * * <p> Two Unicode code points are considered the same * ignoring case if at least one of the following is true: * <ul> * <li> The two Unicode code points are the same (as compared by the * {@code ==} operator) * <li> Calling {@code Character.toLowerCase(Character.toUpperCase(int))} * on each Unicode code point produces the same result * </ul> * * <p>Note that this method does <em>not</em> take locale into account, and * will result in unsatisfactory results for certain locales. The * {@link java.text.Collator} class provides locale-sensitive comparison. * * @param anotherString * The {@code String} to compare this {@code String} against * * @return {@code true} if the argument is not {@code null} and it * represents an equivalent {@code String} ignoring case; {@code * false} otherwise * * @see #equals(Object) * @see #codePoints() */ public boolean equalsIgnoreCase(String anotherString) { return (this == anotherString) ? true : (anotherString != null) && (anotherString.length() == length()) && regionMatches(true, 0, anotherString, 0, length()); } /** * Compares two strings lexicographically. * The comparison is based on the Unicode value of each character in * the strings. The character sequence represented by this * {@code String} object is compared lexicographically to the * character sequence represented by the argument string. The result is * a negative integer if this {@code String} object * lexicographically precedes the argument string. The result is a * positive integer if this {@code String} object lexicographically * follows the argument string. The result is zero if the strings * are equal; {@code compareTo} returns {@code 0} exactly when * the {@link #equals(Object)} method would return {@code true}. * <p> * This is the definition of lexicographic ordering. If two strings are * different, then either they have different characters at some index * that is a valid index for both strings, or their lengths are different, * or both. If they have different characters at one or more index * positions, let <i>k</i> be the smallest such index; then the string * whose character at position <i>k</i> has the smaller value, as * determined by using the {@code <} operator, lexicographically precedes the * other string. In this case, {@code compareTo} returns the * difference of the two character values at position {@code k} in * the two string -- that is, the value: * <blockquote><pre> * this.charAt(k)-anotherString.charAt(k) * </pre></blockquote> * If there is no index position at which they differ, then the shorter * string lexicographically precedes the longer string. In this case, * {@code compareTo} returns the difference of the lengths of the * strings -- that is, the value: * <blockquote><pre> * this.length()-anotherString.length() * </pre></blockquote> * * <p>For finer-grained String comparison, refer to * {@link java.text.Collator}. * * @param anotherString the {@code String} to be compared. * @return the value {@code 0} if the argument string is equal to * this string; a value less than {@code 0} if this string * is lexicographically less than the string argument; and a * value greater than {@code 0} if this string is * lexicographically greater than the string argument. */ public int compareTo(String anotherString) { byte v1[] = value; byte v2[] = anotherString.value; byte coder = coder(); if (coder == anotherString.coder()) { return coder == LATIN1 ? StringLatin1.compareTo(v1, v2) : StringUTF16.compareTo(v1, v2); } return coder == LATIN1 ? StringLatin1.compareToUTF16(v1, v2) : StringUTF16.compareToLatin1(v1, v2); } /** * A Comparator that orders {@code String} objects as by * {@link #compareToIgnoreCase(String) compareToIgnoreCase}. * This comparator is serializable. * <p> * Note that this Comparator does <em>not</em> take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The {@link java.text.Collator} class provides locale-sensitive comparison. * * @see java.text.Collator * @since 1.2 */ public static final Comparator<String> CASE_INSENSITIVE_ORDER = new CaseInsensitiveComparator(); /** * CaseInsensitiveComparator for Strings. */ private static class CaseInsensitiveComparator implements Comparator<String>, java.io.Serializable { // use serialVersionUID from JDK 1.2.2 for interoperability @java.io.Serial private static final long serialVersionUID = 8575799808933029326L; public int compare(String s1, String s2) { byte v1[] = s1.value; byte v2[] = s2.value; byte coder = s1.coder(); if (coder == s2.coder()) { return coder == LATIN1 ? StringLatin1.compareToCI(v1, v2) : StringUTF16.compareToCI(v1, v2); } return coder == LATIN1 ? StringLatin1.compareToCI_UTF16(v1, v2) : StringUTF16.compareToCI_Latin1(v1, v2); } /** Replaces the de-serialized object. */ @java.io.Serial private Object readResolve() { return CASE_INSENSITIVE_ORDER; } } /** * Compares two strings lexicographically, ignoring case * differences. This method returns an integer whose sign is that of * calling {@code compareTo} with case folded versions of the strings * where case differences have been eliminated by calling * {@code Character.toLowerCase(Character.toUpperCase(int))} on * each Unicode code point. * <p> * Note that this method does <em>not</em> take locale into account, * and will result in an unsatisfactory ordering for certain locales. * The {@link java.text.Collator} class provides locale-sensitive comparison. * * @param str the {@code String} to be compared. * @return a negative integer, zero, or a positive integer as the * specified String is greater than, equal to, or less * than this String, ignoring case considerations. * @see java.text.Collator * @see #codePoints() * @since 1.2 */ public int compareToIgnoreCase(String str) { return CASE_INSENSITIVE_ORDER.compare(this, str); } /** * Tests if two string regions are equal. * <p> * A substring of this {@code String} object is compared to a substring * of the argument other. The result is true if these substrings * represent identical character sequences. The substring of this * {@code String} object to be compared begins at index {@code toffset} * and has length {@code len}. The substring of other to be compared * begins at index {@code ooffset} and has length {@code len}. The * result is {@code false} if and only if at least one of the following * is true: * <ul><li>{@code toffset} is negative. * <li>{@code ooffset} is negative. * <li>{@code toffset+len} is greater than the length of this * {@code String} object. * <li>{@code ooffset+len} is greater than the length of the other * argument. * <li>There is some nonnegative integer <i>k</i> less than {@code len} * such that: * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + } * <i>k</i>{@code )} * </ul> * * <p>Note that this method does <em>not</em> take locale into account. The * {@link java.text.Collator} class provides locale-sensitive comparison. * * @param toffset the starting offset of the subregion in this string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters to compare. * @return {@code true} if the specified subregion of this string * exactly matches the specified subregion of the string argument; * {@code false} otherwise. */ public boolean regionMatches(int toffset, String other, int ooffset, int len) { byte tv[] = value; byte ov[] = other.value; // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len) || (ooffset > (long)other.length() - len)) { return false; } byte coder = coder(); if (coder == other.coder()) { if (!isLatin1() && (len > 0)) { toffset = toffset << 1; ooffset = ooffset << 1; len = len << 1; } while (len-- > 0) { if (tv[toffset++] != ov[ooffset++]) { return false; } } } else { if (coder == LATIN1) { while (len-- > 0) { if (StringLatin1.getChar(tv, toffset++) != StringUTF16.getChar(ov, ooffset++)) { return false; } } } else { while (len-- > 0) { if (StringUTF16.getChar(tv, toffset++) != StringLatin1.getChar(ov, ooffset++)) { return false; } } } } return true; } /** * Tests if two string regions are equal. * <p> * A substring of this {@code String} object is compared to a substring * of the argument {@code other}. The result is {@code true} if these * substrings represent Unicode code point sequences that are the same, * ignoring case if and only if {@code ignoreCase} is true. * The sequences {@code tsequence} and {@code osequence} are compared, * where {@code tsequence} is the sequence produced as if by calling * {@code this.substring(toffset, toffset + len).codePoints()} and * {@code osequence} is the sequence produced as if by calling * {@code other.substring(ooffset, ooffset + len).codePoints()}. * The result is {@code true} if and only if all of the following * are true: * <ul><li>{@code toffset} is non-negative. * <li>{@code ooffset} is non-negative. * <li>{@code toffset+len} is less than or equal to the length of this * {@code String} object. * <li>{@code ooffset+len} is less than or equal to the length of the other * argument. * <li>if {@code ignoreCase} is {@code false}, all pairs of corresponding Unicode * code points are equal integer values; or if {@code ignoreCase} is {@code true}, * {@link Character#toLowerCase(int) Character.toLowerCase(} * {@link Character#toUpperCase(int)}{@code )} on all pairs of Unicode code points * results in equal integer values. * </ul> * * <p>Note that this method does <em>not</em> take locale into account, * and will result in unsatisfactory results for certain locales when * {@code ignoreCase} is {@code true}. The {@link java.text.Collator} class * provides locale-sensitive comparison. * * @param ignoreCase if {@code true}, ignore case when comparing * characters. * @param toffset the starting offset of the subregion in this * string. * @param other the string argument. * @param ooffset the starting offset of the subregion in the string * argument. * @param len the number of characters (Unicode code units - * 16bit {@code char} value) to compare. * @return {@code true} if the specified subregion of this string * matches the specified subregion of the string argument; * {@code false} otherwise. Whether the matching is exact * or case insensitive depends on the {@code ignoreCase} * argument. * @see #codePoints() */ public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len) { if (!ignoreCase) { return regionMatches(toffset, other, ooffset, len); } // Note: toffset, ooffset, or len might be near -1>>>1. if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len) || (ooffset > (long)other.length() - len)) { return false; } byte tv[] = value; byte ov[] = other.value; byte coder = coder(); if (coder == other.coder()) { return coder == LATIN1 ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len) : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len); } return coder == LATIN1 ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len) : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len); } /** * Tests if the substring of this string beginning at the * specified index starts with the specified prefix. * * @param prefix the prefix. * @param toffset where to begin looking in this string. * @return {@code true} if the character sequence represented by the * argument is a prefix of the substring of this object starting * at index {@code toffset}; {@code false} otherwise. * The result is {@code false} if {@code toffset} is * negative or greater than the length of this * {@code String} object; otherwise the result is the same * as the result of the expression * <pre> * this.substring(toffset).startsWith(prefix) * </pre> */ public boolean startsWith(String prefix, int toffset) { // Note: toffset might be near -1>>>1. if (toffset < 0 || toffset > length() - prefix.length()) { return false; } byte ta[] = value; byte pa[] = prefix.value; int po = 0; int pc = pa.length; byte coder = coder(); if (coder == prefix.coder()) { int to = (coder == LATIN1) ? toffset : toffset << 1; while (po < pc) { if (ta[to++] != pa[po++]) { return false; } } } else { if (coder == LATIN1) { // && pcoder == UTF16 return false; } // coder == UTF16 && pcoder == LATIN1) while (po < pc) { if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) { return false; } } } return true; } /** * Tests if this string starts with the specified prefix. * * @param prefix the prefix. * @return {@code true} if the character sequence represented by the * argument is a prefix of the character sequence represented by * this string; {@code false} otherwise. * Note also that {@code true} will be returned if the * argument is an empty string or is equal to this * {@code String} object as determined by the * {@link #equals(Object)} method. * @since 1.0 */ public boolean startsWith(String prefix) { return startsWith(prefix, 0); } /** * Tests if this string ends with the specified suffix. * * @param suffix the suffix. * @return {@code true} if the character sequence represented by the * argument is a suffix of the character sequence represented by * this object; {@code false} otherwise. Note that the * result will be {@code true} if the argument is the * empty string or is equal to this {@code String} object * as determined by the {@link #equals(Object)} method. */ public boolean endsWith(String suffix) { return startsWith(suffix, length() - suffix.length()); } /** * Returns a hash code for this string. The hash code for a * {@code String} object is computed as * <blockquote><pre> * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1] * </pre></blockquote> * using {@code int} arithmetic, where {@code s[i]} is the * <i>i</i>th character of the string, {@code n} is the length of * the string, and {@code ^} indicates exponentiation. * (The hash value of the empty string is zero.) * * @return a hash code value for this object. */ public int hashCode() { // The hash or hashIsZero fields are subject to a benign data race, // making it crucial to ensure that any observable result of the // calculation in this method stays correct under any possible read of // these fields. Necessary restrictions to allow this to be correct // without explicit memory fences or similar concurrency primitives is // that we can ever only write to one of these two fields for a given // String instance, and that the computation is idempotent and derived // from immutable state int h = hash; if (h == 0 && !hashIsZero) { h = isLatin1() ? StringLatin1.hashCode(value) : StringUTF16.hashCode(value); if (h == 0) { hashIsZero = true; } else { hash = h; } } return h; } /** * Returns the index within this string of the first occurrence of * the specified character. If a character with value * {@code ch} occurs in the character sequence represented by * this {@code String} object, then the index (in Unicode * code units) of the first such occurrence is returned. For * values of {@code ch} in the range from 0 to 0xFFFF * (inclusive), this is the smallest value <i>k</i> such that: * <blockquote><pre> * this.charAt(<i>k</i>) == ch * </pre></blockquote> * is true. For other values of {@code ch}, it is the * smallest value <i>k</i> such that: * <blockquote><pre> * this.codePointAt(<i>k</i>) == ch * </pre></blockquote> * is true. In either case, if no such character occurs in this * string, then {@code -1} is returned. * * @param ch a character (Unicode code point). * @return the index of the first occurrence of the character in the * character sequence represented by this object, or * {@code -1} if the character does not occur. */ public int indexOf(int ch) { return indexOf(ch, 0); } /** * Returns the index within this string of the first occurrence of the * specified character, starting the search at the specified index. * <p> * If a character with value {@code ch} occurs in the * character sequence represented by this {@code String} * object at an index no smaller than {@code fromIndex}, then * the index of the first such occurrence is returned. For values * of {@code ch} in the range from 0 to 0xFFFF (inclusive), * this is the smallest value <i>k</i> such that: * <blockquote><pre> * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> >= fromIndex) * </pre></blockquote> * is true. For other values of {@code ch}, it is the * smallest value <i>k</i> such that: * <blockquote><pre> * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> >= fromIndex) * </pre></blockquote> * is true. In either case, if no such character occurs in this * string at or after position {@code fromIndex}, then * {@code -1} is returned. * * <p> * There is no restriction on the value of {@code fromIndex}. If it * is negative, it has the same effect as if it were zero: this entire * string may be searched. If it is greater than the length of this * string, it has the same effect as if it were equal to the length of * this string: {@code -1} is returned. * * <p>All indices are specified in {@code char} values * (Unicode code units). * * @param ch a character (Unicode code point). * @param fromIndex the index to start the search from. * @return the index of the first occurrence of the character in the * character sequence represented by this object that is greater * than or equal to {@code fromIndex}, or {@code -1} * if the character does not occur. */ public int indexOf(int ch, int fromIndex) { return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex) : StringUTF16.indexOf(value, ch, fromIndex); } /** * Returns the index within this string of the last occurrence of * the specified character. For values of {@code ch} in the * range from 0 to 0xFFFF (inclusive), the index (in Unicode code * units) returned is the largest value <i>k</i> such that: * <blockquote><pre> * this.charAt(<i>k</i>) == ch * </pre></blockquote> * is true. For other values of {@code ch}, it is the * largest value <i>k</i> such that: * <blockquote><pre> * this.codePointAt(<i>k</i>) == ch * </pre></blockquote> * is true. In either case, if no such character occurs in this * string, then {@code -1} is returned. The * {@code String} is searched backwards starting at the last * character. * * @param ch a character (Unicode code point). * @return the index of the last occurrence of the character in the * character sequence represented by this object, or * {@code -1} if the character does not occur. */ public int lastIndexOf(int ch) { return lastIndexOf(ch, length() - 1); } /** * Returns the index within this string of the last occurrence of * the specified character, searching backward starting at the * specified index. For values of {@code ch} in the range * from 0 to 0xFFFF (inclusive), the index returned is the largest * value <i>k</i> such that: * <blockquote><pre> * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> <= fromIndex) * </pre></blockquote> * is true. For other values of {@code ch}, it is the * largest value <i>k</i> such that: * <blockquote><pre> * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> <= fromIndex) * </pre></blockquote> * is true. In either case, if no such character occurs in this * string at or before position {@code fromIndex}, then * {@code -1} is returned. * * <p>All indices are specified in {@code char} values * (Unicode code units). * * @param ch a character (Unicode code point). * @param fromIndex the index to start the search from. There is no * restriction on the value of {@code fromIndex}. If it is * greater than or equal to the length of this string, it has * the same effect as if it were equal to one less than the * length of this string: this entire string may be searched. * If it is negative, it has the same effect as if it were -1: * -1 is returned. * @return the index of the last occurrence of the character in the * character sequence represented by this object that is less * than or equal to {@code fromIndex}, or {@code -1} * if the character does not occur before that point. */ public int lastIndexOf(int ch, int fromIndex) { return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex) : StringUTF16.lastIndexOf(value, ch, fromIndex); } /** * Returns the index within this string of the first occurrence of the * specified substring. * * <p>The returned index is the smallest value {@code k} for which: * <pre>{@code * this.startsWith(str, k) * }</pre> * If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the first occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ public int indexOf(String str) { byte coder = coder(); if (coder == str.coder()) { return isLatin1() ? StringLatin1.indexOf(value, str.value) : StringUTF16.indexOf(value, str.value); } if (coder == LATIN1) { // str.coder == UTF16 return -1; } return StringUTF16.indexOfLatin1(value, str.value); } /** * Returns the index within this string of the first occurrence of the * specified substring, starting at the specified index. * * <p>The returned index is the smallest value {@code k} for which: * <pre>{@code * k >= Math.min(fromIndex, this.length()) && * this.startsWith(str, k) * }</pre> * If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index from which to start the search. * @return the index of the first occurrence of the specified substring, * starting at the specified index, * or {@code -1} if there is no such occurrence. */ public int indexOf(String str, int fromIndex) { return indexOf(value, coder(), length(), str, fromIndex); } /** * Code shared by String and AbstractStringBuilder to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param src the characters being searched. * @param srcCoder the coder of the source string. * @param srcCount length of the source string. * @param tgtStr the characters being searched for. * @param fromIndex the index to begin searching from. */ static int indexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex) { byte[] tgt = tgtStr.value; byte tgtCoder = tgtStr.coder(); int tgtCount = tgtStr.length(); if (fromIndex >= srcCount) { return (tgtCount == 0 ? srcCount : -1); } if (fromIndex < 0) { fromIndex = 0; } if (tgtCount == 0) { return fromIndex; } if (tgtCount > srcCount) { return -1; } if (srcCoder == tgtCoder) { return srcCoder == LATIN1 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex) : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex); } if (srcCoder == LATIN1) { // && tgtCoder == UTF16 return -1; } // srcCoder == UTF16 && tgtCoder == LATIN1) { return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex); } /** * Returns the index within this string of the last occurrence of the * specified substring. The last occurrence of the empty string "" * is considered to occur at the index value {@code this.length()}. * * <p>The returned index is the largest value {@code k} for which: * <pre>{@code * this.startsWith(str, k) * }</pre> * If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @return the index of the last occurrence of the specified substring, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str) { return lastIndexOf(str, length()); } /** * Returns the index within this string of the last occurrence of the * specified substring, searching backward starting at the specified index. * * <p>The returned index is the largest value {@code k} for which: * <pre>{@code * k <= Math.min(fromIndex, this.length()) && * this.startsWith(str, k) * }</pre> * If no such value of {@code k} exists, then {@code -1} is returned. * * @param str the substring to search for. * @param fromIndex the index to start the search from. * @return the index of the last occurrence of the specified substring, * searching backward from the specified index, * or {@code -1} if there is no such occurrence. */ public int lastIndexOf(String str, int fromIndex) { return lastIndexOf(value, coder(), length(), str, fromIndex); } /** * Code shared by String and AbstractStringBuilder to do searches. The * source is the character array being searched, and the target * is the string being searched for. * * @param src the characters being searched. * @param srcCoder coder handles the mapping between bytes/chars * @param srcCount count of the source string. * @param tgtStr the characters being searched for. * @param fromIndex the index to begin searching from. */ static int lastIndexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex) { byte[] tgt = tgtStr.value; byte tgtCoder = tgtStr.coder(); int tgtCount = tgtStr.length(); /* * Check arguments; return immediately where possible. For * consistency, don't check for null str. */ int rightIndex = srcCount - tgtCount; if (fromIndex > rightIndex) { fromIndex = rightIndex; } if (fromIndex < 0) { return -1; } /* Empty string always matches. */ if (tgtCount == 0) { return fromIndex; } if (srcCoder == tgtCoder) { return srcCoder == LATIN1 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex) : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex); } if (srcCoder == LATIN1) { // && tgtCoder == UTF16 return -1; } // srcCoder == UTF16 && tgtCoder == LATIN1 return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex); } /** * Returns a string that is a substring of this string. The * substring begins with the character at the specified index and * extends to the end of this string. <p> * Examples: * <blockquote><pre> * "unhappy".substring(2) returns "happy" * "Harbison".substring(3) returns "bison" * "emptiness".substring(9) returns "" (an empty string) * </pre></blockquote> * * @param beginIndex the beginning index, inclusive. * @return the specified substring. * @throws IndexOutOfBoundsException if * {@code beginIndex} is negative or larger than the * length of this {@code String} object. */ public String substring(int beginIndex) { return substring(beginIndex, length()); } /** * Returns a string that is a substring of this string. The * substring begins at the specified {@code beginIndex} and * extends to the character at index {@code endIndex - 1}. * Thus the length of the substring is {@code endIndex-beginIndex}. * <p> * Examples: * <blockquote><pre> * "hamburger".substring(4, 8) returns "urge" * "smiles".substring(1, 5) returns "mile" * </pre></blockquote> * * @param beginIndex the beginning index, inclusive. * @param endIndex the ending index, exclusive. * @return the specified substring. * @throws IndexOutOfBoundsException if the * {@code beginIndex} is negative, or * {@code endIndex} is larger than the length of * this {@code String} object, or * {@code beginIndex} is larger than * {@code endIndex}. */ public String substring(int beginIndex, int endIndex) { int length = length(); checkBoundsBeginEnd(beginIndex, endIndex, length); if (beginIndex == 0 && endIndex == length) { return this; } int subLen = endIndex - beginIndex; return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen) : StringUTF16.newString(value, beginIndex, subLen); } /** * Returns a character sequence that is a subsequence of this sequence. * * <p> An invocation of this method of the form * * <blockquote><pre> * str.subSequence(begin, end)</pre></blockquote> * * behaves in exactly the same way as the invocation * * <blockquote><pre> * str.substring(begin, end)</pre></blockquote> * * @apiNote * This method is defined so that the {@code String} class can implement * the {@link CharSequence} interface. * * @param beginIndex the begin index, inclusive. * @param endIndex the end index, exclusive. * @return the specified subsequence. * * @throws IndexOutOfBoundsException * if {@code beginIndex} or {@code endIndex} is negative, * if {@code endIndex} is greater than {@code length()}, * or if {@code beginIndex} is greater than {@code endIndex} * * @since 1.4 */ public CharSequence subSequence(int beginIndex, int endIndex) { return this.substring(beginIndex, endIndex); } /** * Concatenates the specified string to the end of this string. * <p> * If the length of the argument string is {@code 0}, then this * {@code String} object is returned. Otherwise, a * {@code String} object is returned that represents a character * sequence that is the concatenation of the character sequence * represented by this {@code String} object and the character * sequence represented by the argument string.<p> * Examples: * <blockquote><pre> * "cares".concat("s") returns "caress" * "to".concat("get").concat("her") returns "together" * </pre></blockquote> * * @param str the {@code String} that is concatenated to the end * of this {@code String}. * @return a string that represents the concatenation of this object's * characters followed by the string argument's characters. */ public String concat(String str) { if (str.isEmpty()) { return this; } return StringConcatHelper.simpleConcat(this, str); } /** * Returns a string resulting from replacing all occurrences of * {@code oldChar} in this string with {@code newChar}. * <p> * If the character {@code oldChar} does not occur in the * character sequence represented by this {@code String} object, * then a reference to this {@code String} object is returned. * Otherwise, a {@code String} object is returned that * represents a character sequence identical to the character sequence * represented by this {@code String} object, except that every * occurrence of {@code oldChar} is replaced by an occurrence * of {@code newChar}. * <p> * Examples: * <blockquote><pre> * "mesquite in your cellar".replace('e', 'o') * returns "mosquito in your collar" * "the war of baronets".replace('r', 'y') * returns "the way of bayonets" * "sparring with a purple porpoise".replace('p', 't') * returns "starring with a turtle tortoise" * "JonL".replace('q', 'x') returns "JonL" (no change) * </pre></blockquote> * * @param oldChar the old character. * @param newChar the new character. * @return a string derived from this string by replacing every * occurrence of {@code oldChar} with {@code newChar}. */ public String replace(char oldChar, char newChar) { if (oldChar != newChar) { String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar) : StringUTF16.replace(value, oldChar, newChar); if (ret != null) { return ret; } } return this; } /** * Tells whether or not this string matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a>. * * <p> An invocation of this method of the form * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the * same result as the expression * * <blockquote> * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence) * matches(<i>regex</i>, <i>str</i>)} * </blockquote> * * @param regex * the regular expression to which this string is to be matched * * @return {@code true} if, and only if, this string matches the * given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 */ public boolean matches(String regex) { return Pattern.matches(regex, this); } /** * Returns true if and only if this string contains the specified * sequence of char values. * * @param s the sequence to search for * @return true if this string contains {@code s}, false otherwise * @since 1.5 */ public boolean contains(CharSequence s) { return indexOf(s.toString()) >= 0; } /** * Replaces the first substring of this string that matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a> with the * given replacement. * * <p> An invocation of this method of the form * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )} * yields exactly the same result as the expression * * <blockquote> * <code> * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile(String) compile}(<i>regex</i>).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link * java.util.regex.Matcher#replaceFirst(String) replaceFirst}(<i>repl</i>) * </code> * </blockquote> * *<p> * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the * replacement string may cause the results to be different than if it were * being treated as a literal replacement string; see * {@link java.util.regex.Matcher#replaceFirst}. * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special * meaning of these characters, if desired. * * @param regex * the regular expression to which this string is to be matched * @param replacement * the string to be substituted for the first match * * @return The resulting {@code String} * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 */ public String replaceFirst(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceFirst(replacement); } /** * Replaces each substring of this string that matches the given <a * href="../util/regex/Pattern.html#sum">regular expression</a> with the * given replacement. * * <p> An invocation of this method of the form * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )} * yields exactly the same result as the expression * * <blockquote> * <code> * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile(String) compile}(<i>regex</i>).{@link * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link * java.util.regex.Matcher#replaceAll(String) replaceAll}(<i>repl</i>) * </code> * </blockquote> * *<p> * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the * replacement string may cause the results to be different than if it were * being treated as a literal replacement string; see * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}. * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special * meaning of these characters, if desired. * * @param regex * the regular expression to which this string is to be matched * @param replacement * the string to be substituted for each match * * @return The resulting {@code String} * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 */ public String replaceAll(String regex, String replacement) { return Pattern.compile(regex).matcher(this).replaceAll(replacement); } /** * Replaces each substring of this string that matches the literal target * sequence with the specified literal replacement sequence. The * replacement proceeds from the beginning of the string to the end, for * example, replacing "aa" with "b" in the string "aaa" will result in * "ba" rather than "ab". * * @param target The sequence of char values to be replaced * @param replacement The replacement sequence of char values * @return The resulting string * @since 1.5 */ public String replace(CharSequence target, CharSequence replacement) { String trgtStr = target.toString(); String replStr = replacement.toString(); int thisLen = length(); int trgtLen = trgtStr.length(); int replLen = replStr.length(); if (trgtLen > 0) { if (trgtLen == 1 && replLen == 1) { return replace(trgtStr.charAt(0), replStr.charAt(0)); } boolean thisIsLatin1 = this.isLatin1(); boolean trgtIsLatin1 = trgtStr.isLatin1(); boolean replIsLatin1 = replStr.isLatin1(); String ret = (thisIsLatin1 && trgtIsLatin1 && replIsLatin1) ? StringLatin1.replace(value, thisLen, trgtStr.value, trgtLen, replStr.value, replLen) : StringUTF16.replace(value, thisLen, thisIsLatin1, trgtStr.value, trgtLen, trgtIsLatin1, replStr.value, replLen, replIsLatin1); if (ret != null) { return ret; } return this; } else { // trgtLen == 0 int resultLen; try { resultLen = Math.addExact(thisLen, Math.multiplyExact( Math.addExact(thisLen, 1), replLen)); } catch (ArithmeticException ignored) { throw new OutOfMemoryError("Required length exceeds implementation limit"); } StringBuilder sb = new StringBuilder(resultLen); sb.append(replStr); for (int i = 0; i < thisLen; ++i) { sb.append(charAt(i)).append(replStr); } return sb.toString(); } } /** * Splits this string around matches of the given * <a href="../util/regex/Pattern.html#sum">regular expression</a>. * * <p> The array returned by this method contains each substring of this * string that is terminated by another substring that matches the given * expression or is terminated by the end of the string. The substrings in * the array are in the order in which they occur in this string. If the * expression does not match any part of the input then the resulting array * has just one element, namely this string. * * <p> When there is a positive-width match at the beginning of this * string then an empty leading substring is included at the beginning * of the resulting array. A zero-width match at the beginning however * never produces such empty leading substring. * * <p> The {@code limit} parameter controls the number of times the * pattern is applied and therefore affects the length of the resulting * array. * <ul> * <li><p> * If the <i>limit</i> is positive then the pattern will be applied * at most <i>limit</i> - 1 times, the array's length will be * no greater than <i>limit</i>, and the array's last entry will contain * all input beyond the last matched delimiter.</p></li> * * <li><p> * If the <i>limit</i> is zero then the pattern will be applied as * many times as possible, the array can have any length, and trailing * empty strings will be discarded.</p></li> * * <li><p> * If the <i>limit</i> is negative then the pattern will be applied * as many times as possible and the array can have any length.</p></li> * </ul> * * <p> The string {@code "boo:and:foo"}, for example, yields the * following results with these parameters: * * <blockquote><table class="plain"> * <caption style="display:none">Split example showing regex, limit, and result</caption> * <thead> * <tr> * <th scope="col">Regex</th> * <th scope="col">Limit</th> * <th scope="col">Result</th> * </tr> * </thead> * <tbody> * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th> * <td>{@code { "boo", "and:foo" }}</td></tr> * <tr><!-- : --> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th> * <td>{@code { "boo", "and", "foo" }}</td></tr> * <tr><!-- : --> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th> * <td>{@code { "boo", "and", "foo" }}</td></tr> * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th> * <td>{@code { "b", "", ":and:f", "", "" }}</td></tr> * <tr><!-- o --> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th> * <td>{@code { "b", "", ":and:f", "", "" }}</td></tr> * <tr><!-- o --> * <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th> * <td>{@code { "b", "", ":and:f" }}</td></tr> * </tbody> * </table></blockquote> * * <p> An invocation of this method of the form * <i>str.</i>{@code split(}<i>regex</i>{@code ,} <i>n</i>{@code )} * yields the same result as the expression * * <blockquote> * <code> * {@link java.util.regex.Pattern}.{@link * java.util.regex.Pattern#compile(String) compile}(<i>regex</i>).{@link * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>, <i>n</i>) * </code> * </blockquote> * * * @param regex * the delimiting regular expression * * @param limit * the result threshold, as described above * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 */ public String[] split(String regex, int limit) { /* fastpath if the regex is a * (1) one-char String and this character is not one of the * RegEx's meta characters ".$|()[{^?*+\\", or * (2) two-char String and the first char is the backslash and * the second is not the ascii digit or ascii letter. */ char ch = 0; if (((regex.length() == 1 && ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) || (regex.length() == 2 && regex.charAt(0) == '\\' && (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 && ((ch-'a')|('z'-ch)) < 0 && ((ch-'A')|('Z'-ch)) < 0)) && (ch < Character.MIN_HIGH_SURROGATE || ch > Character.MAX_LOW_SURROGATE)) { int off = 0; int next = 0; boolean limited = limit > 0; ArrayList<String> list = new ArrayList<>(); while ((next = indexOf(ch, off)) != -1) { if (!limited || list.size() < limit - 1) { list.add(substring(off, next)); off = next + 1; } else { // last one //assert (list.size() == limit - 1); int last = length(); list.add(substring(off, last)); off = last; break; } } // If no match was found, return this if (off == 0) return new String[]{this}; // Add remaining segment if (!limited || list.size() < limit) list.add(substring(off, length())); // Construct result int resultSize = list.size(); if (limit == 0) { while (resultSize > 0 && list.get(resultSize - 1).isEmpty()) { resultSize--; } } String[] result = new String[resultSize]; return list.subList(0, resultSize).toArray(result); } return Pattern.compile(regex).split(this, limit); } /** * Splits this string around matches of the given <a * href="../util/regex/Pattern.html#sum">regular expression</a>. * * <p> This method works as if by invoking the two-argument {@link * #split(String, int) split} method with the given expression and a limit * argument of zero. Trailing empty strings are therefore not included in * the resulting array. * * <p> The string {@code "boo:and:foo"}, for example, yields the following * results with these expressions: * * <blockquote><table class="plain"> * <caption style="display:none">Split examples showing regex and result</caption> * <thead> * <tr> * <th scope="col">Regex</th> * <th scope="col">Result</th> * </tr> * </thead> * <tbody> * <tr><th scope="row" style="text-weight:normal">:</th> * <td>{@code { "boo", "and", "foo" }}</td></tr> * <tr><th scope="row" style="text-weight:normal">o</th> * <td>{@code { "b", "", ":and:f" }}</td></tr> * </tbody> * </table></blockquote> * * * @param regex * the delimiting regular expression * * @return the array of strings computed by splitting this string * around matches of the given regular expression * * @throws PatternSyntaxException * if the regular expression's syntax is invalid * * @see java.util.regex.Pattern * * @since 1.4 */ public String[] split(String regex) { return split(regex, 0); } /** * Returns a new String composed of copies of the * {@code CharSequence elements} joined together with a copy of * the specified {@code delimiter}. * * <blockquote>For example, * <pre>{@code * String message = String.join("-", "Java", "is", "cool"); * // message returned is: "Java-is-cool" * }</pre></blockquote> * * Note that if an element is null, then {@code "null"} is added. * * @param delimiter the delimiter that separates each element * @param elements the elements to join together. * * @return a new {@code String} that is composed of the {@code elements} * separated by the {@code delimiter} * * @throws NullPointerException If {@code delimiter} or {@code elements} * is {@code null} * * @see java.util.StringJoiner * @since 1.8 */ public static String join(CharSequence delimiter, CharSequence... elements) { var delim = delimiter.toString(); var elems = new String[elements.length]; for (int i = 0; i < elements.length; i++) { elems[i] = String.valueOf(elements[i]); } return join("", "", delim, elems, elems.length); } /** * Designated join routine. * * @param prefix the non-null prefix * @param suffix the non-null suffix * @param delimiter the non-null delimiter * @param elements the non-null array of non-null elements * @param size the number of elements in the array (<= elements.length) * @return the joined string */ @ForceInline static String join(String prefix, String suffix, String delimiter, String[] elements, int size) { int icoder = prefix.coder() | suffix.coder(); long len = (long) prefix.length() + suffix.length(); if (size > 1) { // when there are more than one element, size - 1 delimiters will be emitted len += (long) (size - 1) * delimiter.length(); icoder |= delimiter.coder(); } // assert len > 0L; // max: (long) Integer.MAX_VALUE << 32 // following loop wil add max: (long) Integer.MAX_VALUE * Integer.MAX_VALUE to len // so len can overflow at most once for (int i = 0; i < size; i++) { var el = elements[i]; len += el.length(); icoder |= el.coder(); } byte coder = (byte) icoder; // long len overflow check, char -> byte length, int len overflow check if (len < 0L || (len <<= coder) != (int) len) { throw new OutOfMemoryError("Requested string length exceeds VM limit"); } byte[] value = StringConcatHelper.newArray(len); int off = 0; prefix.getBytes(value, off, coder); off += prefix.length(); if (size > 0) { var el = elements[0]; el.getBytes(value, off, coder); off += el.length(); for (int i = 1; i < size; i++) { delimiter.getBytes(value, off, coder); off += delimiter.length(); el = elements[i]; el.getBytes(value, off, coder); off += el.length(); } } suffix.getBytes(value, off, coder); // assert off + suffix.length() == value.length >> coder; return new String(value, coder); } /** * Returns a new {@code String} composed of copies of the * {@code CharSequence elements} joined together with a copy of the * specified {@code delimiter}. * * <blockquote>For example, * <pre>{@code * List<String> strings = List.of("Java", "is", "cool"); * String message = String.join(" ", strings); * // message returned is: "Java is cool" * * Set<String> strings = * new LinkedHashSet<>(List.of("Java", "is", "very", "cool")); * String message = String.join("-", strings); * // message returned is: "Java-is-very-cool" * }</pre></blockquote> * * Note that if an individual element is {@code null}, then {@code "null"} is added. * * @param delimiter a sequence of characters that is used to separate each * of the {@code elements} in the resulting {@code String} * @param elements an {@code Iterable} that will have its {@code elements} * joined together. * * @return a new {@code String} that is composed from the {@code elements} * argument * * @throws NullPointerException If {@code delimiter} or {@code elements} * is {@code null} * * @see #join(CharSequence,CharSequence...) * @see java.util.StringJoiner * @since 1.8 */ public static String join(CharSequence delimiter, Iterable<? extends CharSequence> elements) { Objects.requireNonNull(delimiter); Objects.requireNonNull(elements); var delim = delimiter.toString(); var elems = new String[8]; int size = 0; for (CharSequence cs: elements) { if (size >= elems.length) { elems = Arrays.copyOf(elems, elems.length << 1); } elems[size++] = String.valueOf(cs); } return join("", "", delim, elems, size); } /** * Converts all of the characters in this {@code String} to lower * case using the rules of the given {@code Locale}. Case mapping is based * on the Unicode Standard version specified by the {@link java.lang.Character Character} * class. Since case mappings are not always 1:1 char mappings, the resulting * {@code String} may be a different length than the original {@code String}. * <p> * Examples of lowercase mappings are in the following table: * <table class="plain"> * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption> * <thead> * <tr> * <th scope="col">Language Code of Locale</th> * <th scope="col">Upper Case</th> * <th scope="col">Lower Case</th> * <th scope="col">Description</th> * </tr> * </thead> * <tbody> * <tr> * <td>tr (Turkish)</td> * <th scope="row" style="font-weight:normal; text-align:left">\u0130</th> * <td>\u0069</td> * <td>capital letter I with dot above -> small letter i</td> * </tr> * <tr> * <td>tr (Turkish)</td> * <th scope="row" style="font-weight:normal; text-align:left">\u0049</th> * <td>\u0131</td> * <td>capital letter I -> small letter dotless i </td> * </tr> * <tr> * <td>(all)</td> * <th scope="row" style="font-weight:normal; text-align:left">French Fries</th> * <td>french fries</td> * <td>lowercased all chars in String</td> * </tr> * <tr> * <td>(all)</td> * <th scope="row" style="font-weight:normal; text-align:left"> * ΙΧΘΥΣ</th> * <td>ιχθυσ</td> * <td>lowercased all chars in String</td> * </tr> * </tbody> * </table> * * @param locale use the case transformation rules for this locale * @return the {@code String}, converted to lowercase. * @see java.lang.String#toLowerCase() * @see java.lang.String#toUpperCase() * @see java.lang.String#toUpperCase(Locale) * @since 1.1 */ public String toLowerCase(Locale locale) { return isLatin1() ? StringLatin1.toLowerCase(this, value, locale) : StringUTF16.toLowerCase(this, value, locale); } /** * Converts all of the characters in this {@code String} to lower * case using the rules of the default locale. This is equivalent to calling * {@code toLowerCase(Locale.getDefault())}. * <p> * <b>Note:</b> This method is locale sensitive, and may produce unexpected * results if used for strings that are intended to be interpreted locale * independently. * Examples are programming language identifiers, protocol keys, and HTML * tags. * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the * LATIN SMALL LETTER DOTLESS I character. * To obtain correct results for locale insensitive strings, use * {@code toLowerCase(Locale.ROOT)}. * * @return the {@code String}, converted to lowercase. * @see java.lang.String#toLowerCase(Locale) */ public String toLowerCase() { return toLowerCase(Locale.getDefault()); } /** * Converts all of the characters in this {@code String} to upper * case using the rules of the given {@code Locale}. Case mapping is based * on the Unicode Standard version specified by the {@link java.lang.Character Character} * class. Since case mappings are not always 1:1 char mappings, the resulting * {@code String} may be a different length than the original {@code String}. * <p> * Examples of locale-sensitive and 1:M case mappings are in the following table. * * <table class="plain"> * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption> * <thead> * <tr> * <th scope="col">Language Code of Locale</th> * <th scope="col">Lower Case</th> * <th scope="col">Upper Case</th> * <th scope="col">Description</th> * </tr> * </thead> * <tbody> * <tr> * <td>tr (Turkish)</td> * <th scope="row" style="font-weight:normal; text-align:left">\u0069</th> * <td>\u0130</td> * <td>small letter i -> capital letter I with dot above</td> * </tr> * <tr> * <td>tr (Turkish)</td> * <th scope="row" style="font-weight:normal; text-align:left">\u0131</th> * <td>\u0049</td> * <td>small letter dotless i -> capital letter I</td> * </tr> * <tr> * <td>(all)</td> * <th scope="row" style="font-weight:normal; text-align:left">\u00df</th> * <td>\u0053 \u0053</td> * <td>small letter sharp s -> two letters: SS</td> * </tr> * <tr> * <td>(all)</td> * <th scope="row" style="font-weight:normal; text-align:left">Fahrvergnügen</th> * <td>FAHRVERGNÜGEN</td> * <td></td> * </tr> * </tbody> * </table> * @param locale use the case transformation rules for this locale * @return the {@code String}, converted to uppercase. * @see java.lang.String#toUpperCase() * @see java.lang.String#toLowerCase() * @see java.lang.String#toLowerCase(Locale) * @since 1.1 */ public String toUpperCase(Locale locale) { return isLatin1() ? StringLatin1.toUpperCase(this, value, locale) : StringUTF16.toUpperCase(this, value, locale); } /** * Converts all of the characters in this {@code String} to upper * case using the rules of the default locale. This method is equivalent to * {@code toUpperCase(Locale.getDefault())}. * <p> * <b>Note:</b> This method is locale sensitive, and may produce unexpected * results if used for strings that are intended to be interpreted locale * independently. * Examples are programming language identifiers, protocol keys, and HTML * tags. * For instance, {@code "title".toUpperCase()} in a Turkish locale * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the * LATIN CAPITAL LETTER I WITH DOT ABOVE character. * To obtain correct results for locale insensitive strings, use * {@code toUpperCase(Locale.ROOT)}. * * @return the {@code String}, converted to uppercase. * @see java.lang.String#toUpperCase(Locale) */ public String toUpperCase() { return toUpperCase(Locale.getDefault()); } /** * Returns a string whose value is this string, with all leading * and trailing space removed, where space is defined * as any character whose codepoint is less than or equal to * {@code 'U+0020'} (the space character). * <p> * If this {@code String} object represents an empty character * sequence, or the first and last characters of character sequence * represented by this {@code String} object both have codes * that are not space (as defined above), then a * reference to this {@code String} object is returned. * <p> * Otherwise, if all characters in this string are space (as * defined above), then a {@code String} object representing an * empty string is returned. * <p> * Otherwise, let <i>k</i> be the index of the first character in the * string whose code is not a space (as defined above) and let * <i>m</i> be the index of the last character in the string whose code * is not a space (as defined above). A {@code String} * object is returned, representing the substring of this string that * begins with the character at index <i>k</i> and ends with the * character at index <i>m</i>-that is, the result of * {@code this.substring(k, m + 1)}. * <p> * This method may be used to trim space (as defined above) from * the beginning and end of a string. * * @return a string whose value is this string, with all leading * and trailing space removed, or this string if it * has no leading or trailing space. */ public String trim() { String ret = isLatin1() ? StringLatin1.trim(value) : StringUTF16.trim(value); return ret == null ? this : ret; } /** * Returns a string whose value is this string, with all leading * and trailing {@linkplain Character#isWhitespace(int) white space} * removed. * <p> * If this {@code String} object represents an empty string, * or if all code points in this string are * {@linkplain Character#isWhitespace(int) white space}, then an empty string * is returned. * <p> * Otherwise, returns a substring of this string beginning with the first * code point that is not a {@linkplain Character#isWhitespace(int) white space} * up to and including the last code point that is not a * {@linkplain Character#isWhitespace(int) white space}. * <p> * This method may be used to strip * {@linkplain Character#isWhitespace(int) white space} from * the beginning and end of a string. * * @return a string whose value is this string, with all leading * and trailing white space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String strip() { String ret = isLatin1() ? StringLatin1.strip(value) : StringUTF16.strip(value); return ret == null ? this : ret; } /** * Returns a string whose value is this string, with all leading * {@linkplain Character#isWhitespace(int) white space} removed. * <p> * If this {@code String} object represents an empty string, * or if all code points in this string are * {@linkplain Character#isWhitespace(int) white space}, then an empty string * is returned. * <p> * Otherwise, returns a substring of this string beginning with the first * code point that is not a {@linkplain Character#isWhitespace(int) white space} * up to and including the last code point of this string. * <p> * This method may be used to trim * {@linkplain Character#isWhitespace(int) white space} from * the beginning of a string. * * @return a string whose value is this string, with all leading white * space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String stripLeading() { String ret = isLatin1() ? StringLatin1.stripLeading(value) : StringUTF16.stripLeading(value); return ret == null ? this : ret; } /** * Returns a string whose value is this string, with all trailing * {@linkplain Character#isWhitespace(int) white space} removed. * <p> * If this {@code String} object represents an empty string, * or if all characters in this string are * {@linkplain Character#isWhitespace(int) white space}, then an empty string * is returned. * <p> * Otherwise, returns a substring of this string beginning with the first * code point of this string up to and including the last code point * that is not a {@linkplain Character#isWhitespace(int) white space}. * <p> * This method may be used to trim * {@linkplain Character#isWhitespace(int) white space} from * the end of a string. * * @return a string whose value is this string, with all trailing white * space removed * * @see Character#isWhitespace(int) * * @since 11 */ public String stripTrailing() { String ret = isLatin1() ? StringLatin1.stripTrailing(value) : StringUTF16.stripTrailing(value); return ret == null ? this : ret; } /** * Returns {@code true} if the string is empty or contains only * {@linkplain Character#isWhitespace(int) white space} codepoints, * otherwise {@code false}. * * @return {@code true} if the string is empty or contains only * {@linkplain Character#isWhitespace(int) white space} codepoints, * otherwise {@code false} * * @see Character#isWhitespace(int) * * @since 11 */ public boolean isBlank() { return indexOfNonWhitespace() == length(); } /** * Returns a stream of lines extracted from this string, * separated by line terminators. * <p> * A <i>line terminator</i> is one of the following: * a line feed character {@code "\n"} (U+000A), * a carriage return character {@code "\r"} (U+000D), * or a carriage return followed immediately by a line feed * {@code "\r\n"} (U+000D U+000A). * <p> * A <i>line</i> is either a sequence of zero or more characters * followed by a line terminator, or it is a sequence of one or * more characters followed by the end of the string. A * line does not include the line terminator. * <p> * The stream returned by this method contains the lines from * this string in the order in which they occur. * * @apiNote This definition of <i>line</i> implies that an empty * string has zero lines and that there is no empty line * following a line terminator at the end of a string. * * @implNote This method provides better performance than * split("\R") by supplying elements lazily and * by faster search of new line terminators. * * @return the stream of lines extracted from this string * * @since 11 */ public Stream<String> lines() { return isLatin1() ? StringLatin1.lines(value) : StringUTF16.lines(value); } /** * Adjusts the indentation of each line of this string based on the value of * {@code n}, and normalizes line termination characters. * <p> * This string is conceptually separated into lines using * {@link String#lines()}. Each line is then adjusted as described below * and then suffixed with a line feed {@code "\n"} (U+000A). The resulting * lines are then concatenated and returned. * <p> * If {@code n > 0} then {@code n} spaces (U+0020) are inserted at the * beginning of each line. * <p> * If {@code n < 0} then up to {@code n} * {@linkplain Character#isWhitespace(int) white space characters} are removed * from the beginning of each line. If a given line does not contain * sufficient white space then all leading * {@linkplain Character#isWhitespace(int) white space characters} are removed. * Each white space character is treated as a single character. In * particular, the tab character {@code "\t"} (U+0009) is considered a * single character; it is not expanded. * <p> * If {@code n == 0} then the line remains unchanged. However, line * terminators are still normalized. * * @param n number of leading * {@linkplain Character#isWhitespace(int) white space characters} * to add or remove * * @return string with indentation adjusted and line endings normalized * * @see String#lines() * @see String#isBlank() * @see Character#isWhitespace(int) * * @since 12 */ public String indent(int n) { if (isEmpty()) { return ""; } Stream<String> stream = lines(); if (n > 0) { final String spaces = " ".repeat(n); stream = stream.map(s -> spaces + s); } else if (n == Integer.MIN_VALUE) { stream = stream.map(s -> s.stripLeading()); } else if (n < 0) { stream = stream.map(s -> s.substring(Math.min(-n, s.indexOfNonWhitespace()))); } return stream.collect(Collectors.joining("\n", "", "\n")); } private int indexOfNonWhitespace() { return isLatin1() ? StringLatin1.indexOfNonWhitespace(value) : StringUTF16.indexOfNonWhitespace(value); } private int lastIndexOfNonWhitespace() { return isLatin1() ? StringLatin1.lastIndexOfNonWhitespace(value) : StringUTF16.lastIndexOfNonWhitespace(value); } /** * Returns a string whose value is this string, with incidental * {@linkplain Character#isWhitespace(int) white space} removed from * the beginning and end of every line. * <p> * Incidental {@linkplain Character#isWhitespace(int) white space} * is often present in a text block to align the content with the opening * delimiter. For example, in the following code, dots represent incidental * {@linkplain Character#isWhitespace(int) white space}: * <blockquote><pre> * String html = """ * ..............<html> * .............. <body> * .............. <p>Hello, world</p> * .............. </body> * ..............</html> * .............."""; * </pre></blockquote> * This method treats the incidental * {@linkplain Character#isWhitespace(int) white space} as indentation to be * stripped, producing a string that preserves the relative indentation of * the content. Using | to visualize the start of each line of the string: * <blockquote><pre> * |<html> * | <body> * | <p>Hello, world</p> * | </body> * |</html> * </pre></blockquote> * First, the individual lines of this string are extracted. A <i>line</i> * is a sequence of zero or more characters followed by either a line * terminator or the end of the string. * If the string has at least one line terminator, the last line consists * of the characters between the last terminator and the end of the string. * Otherwise, if the string has no terminators, the last line is the start * of the string to the end of the string, in other words, the entire * string. * A line does not include the line terminator. * <p> * Then, the <i>minimum indentation</i> (min) is determined as follows: * <ul> * <li><p>For each non-blank line (as defined by {@link String#isBlank()}), * the leading {@linkplain Character#isWhitespace(int) white space} * characters are counted.</p> * </li> * <li><p>The leading {@linkplain Character#isWhitespace(int) white space} * characters on the last line are also counted even if * {@linkplain String#isBlank() blank}.</p> * </li> * </ul> * <p>The <i>min</i> value is the smallest of these counts. * <p> * For each {@linkplain String#isBlank() non-blank} line, <i>min</i> leading * {@linkplain Character#isWhitespace(int) white space} characters are * removed, and any trailing {@linkplain Character#isWhitespace(int) white * space} characters are removed. {@linkplain String#isBlank() Blank} lines * are replaced with the empty string. * * <p> * Finally, the lines are joined into a new string, using the LF character * {@code "\n"} (U+000A) to separate lines. * * @apiNote * This method's primary purpose is to shift a block of lines as far as * possible to the left, while preserving relative indentation. Lines * that were indented the least will thus have no leading * {@linkplain Character#isWhitespace(int) white space}. * The result will have the same number of line terminators as this string. * If this string ends with a line terminator then the result will end * with a line terminator. * * @implSpec * This method treats all {@linkplain Character#isWhitespace(int) white space} * characters as having equal width. As long as the indentation on every * line is consistently composed of the same character sequences, then the * result will be as described above. * * @return string with incidental indentation removed and line * terminators normalized * * @see String#lines() * @see String#isBlank() * @see String#indent(int) * @see Character#isWhitespace(int) * * @since 15 * */ public String stripIndent() { int length = length(); if (length == 0) { return ""; } char lastChar = charAt(length - 1); boolean optOut = lastChar == '\n' || lastChar == '\r'; List<String> lines = lines().toList(); final int outdent = optOut ? 0 : outdent(lines); return lines.stream() .map(line -> { int firstNonWhitespace = line.indexOfNonWhitespace(); int lastNonWhitespace = line.lastIndexOfNonWhitespace(); int incidentalWhitespace = Math.min(outdent, firstNonWhitespace); return firstNonWhitespace > lastNonWhitespace ? "" : line.substring(incidentalWhitespace, lastNonWhitespace); }) .collect(Collectors.joining("\n", "", optOut ? "\n" : "")); } private static int outdent(List<String> lines) { // Note: outdent is guaranteed to be zero or positive number. // If there isn't a non-blank line then the last must be blank int outdent = Integer.MAX_VALUE; for (String line : lines) { int leadingWhitespace = line.indexOfNonWhitespace(); if (leadingWhitespace != line.length()) { outdent = Integer.min(outdent, leadingWhitespace); } } String lastLine = lines.get(lines.size() - 1); if (lastLine.isBlank()) { outdent = Integer.min(outdent, lastLine.length()); } return outdent; } /** * Returns a string whose value is this string, with escape sequences * translated as if in a string literal. * <p> * Escape sequences are translated as follows; * <table class="striped"> * <caption style="display:none">Translation</caption> * <thead> * <tr> * <th scope="col">Escape</th> * <th scope="col">Name</th> * <th scope="col">Translation</th> * </tr> * </thead> * <tbody> * <tr> * <th scope="row">{@code \u005Cb}</th> * <td>backspace</td> * <td>{@code U+0008}</td> * </tr> * <tr> * <th scope="row">{@code \u005Ct}</th> * <td>horizontal tab</td> * <td>{@code U+0009}</td> * </tr> * <tr> * <th scope="row">{@code \u005Cn}</th> * <td>line feed</td> * <td>{@code U+000A}</td> * </tr> * <tr> * <th scope="row">{@code \u005Cf}</th> * <td>form feed</td> * <td>{@code U+000C}</td> * </tr> * <tr> * <th scope="row">{@code \u005Cr}</th> * <td>carriage return</td> * <td>{@code U+000D}</td> * </tr> * <tr> * <th scope="row">{@code \u005Cs}</th> * <td>space</td> * <td>{@code U+0020}</td> * </tr> * <tr> * <th scope="row">{@code \u005C"}</th> * <td>double quote</td> * <td>{@code U+0022}</td> * </tr> * <tr> * <th scope="row">{@code \u005C'}</th> * <td>single quote</td> * <td>{@code U+0027}</td> * </tr> * <tr> * <th scope="row">{@code \u005C\u005C}</th> * <td>backslash</td> * <td>{@code U+005C}</td> * </tr> * <tr> * <th scope="row">{@code \u005C0 - \u005C377}</th> * <td>octal escape</td> * <td>code point equivalents</td> * </tr> * <tr> * <th scope="row">{@code \u005C<line-terminator>}</th> * <td>continuation</td> * <td>discard</td> * </tr> * </tbody> * </table> * * @implNote * This method does <em>not</em> translate Unicode escapes such as "{@code \u005cu2022}". * Unicode escapes are translated by the Java compiler when reading input characters and * are not part of the string literal specification. * * @throws IllegalArgumentException when an escape sequence is malformed. * * @return String with escape sequences translated. * * @jls 3.10.7 Escape Sequences * * @since 15 */ public String translateEscapes() { if (isEmpty()) { return ""; } char[] chars = toCharArray(); int length = chars.length; int from = 0; int to = 0; while (from < length) { char ch = chars[from++]; if (ch == '\\') { ch = from < length ? chars[from++] : '\0'; switch (ch) { case 'b': ch = '\b'; break; case 'f': ch = '\f'; break; case 'n': ch = '\n'; break; case 'r': ch = '\r'; break; case 's': ch = ' '; break; case 't': ch = '\t'; break; case '\'': case '\"': case '\\': // as is break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': int limit = Integer.min(from + (ch <= '3' ? 2 : 1), length); int code = ch - '0'; while (from < limit) { ch = chars[from]; if (ch < '0' || '7' < ch) { break; } from++; code = (code << 3) | (ch - '0'); } ch = (char)code; break; case '\n': continue; case '\r': if (from < length && chars[from] == '\n') { from++; } continue; default: { String msg = String.format( "Invalid escape sequence: \\%c \\\\u%04X", ch, (int)ch); throw new IllegalArgumentException(msg); } } } chars[to++] = ch; } return new String(chars, 0, to); } /** * This method allows the application of a function to {@code this} * string. The function should expect a single String argument * and produce an {@code R} result. * <p> * Any exception thrown by {@code f.apply()} will be propagated to the * caller. * * @param f a function to apply * * @param <R> the type of the result * * @return the result of applying the function to this string * * @see java.util.function.Function * * @since 12 */ public <R> R transform(Function<? super String, ? extends R> f) { return f.apply(this); } /** * This object (which is already a string!) is itself returned. * * @return the string itself. */ public String toString() { return this; } /** * Returns a stream of {@code int} zero-extending the {@code char} values * from this sequence. Any char which maps to a <a * href="{@docRoot}/java.base/java/lang/Character.html#unicode">surrogate code * point</a> is passed through uninterpreted. * * @return an IntStream of char values from this sequence * @since 9 */ @Override public IntStream chars() { return StreamSupport.intStream( isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE) : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE), false); } /** * Returns a stream of code point values from this sequence. Any surrogate * pairs encountered in the sequence are combined as if by {@linkplain * Character#toCodePoint Character.toCodePoint} and the result is passed * to the stream. Any other code units, including ordinary BMP characters, * unpaired surrogates, and undefined code units, are zero-extended to * {@code int} values which are then passed to the stream. * * @return an IntStream of Unicode code points from this sequence * @since 9 */ @Override public IntStream codePoints() { return StreamSupport.intStream( isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE) : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE), false); } /** * Converts this string to a new character array. * * @return a newly allocated character array whose length is the length * of this string and whose contents are initialized to contain * the character sequence represented by this string. */ public char[] toCharArray() { return isLatin1() ? StringLatin1.toChars(value) : StringUTF16.toChars(value); } /** * Returns a formatted string using the specified format string and * arguments. * * <p> The locale always used is the one returned by {@link * java.util.Locale#getDefault(java.util.Locale.Category) * Locale.getDefault(Locale.Category)} with * {@link java.util.Locale.Category#FORMAT FORMAT} category specified. * * @param format * A <a href="../util/Formatter.html#syntax">format string</a> * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The number of arguments is * variable and may be zero. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * <cite>The Java Virtual Machine Specification</cite>. * The behaviour on a * {@code null} argument depends on the <a * href="../util/Formatter.html#syntax">conversion</a>. * * @throws java.util.IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the <a * href="../util/Formatter.html#detail">Details</a> section of the * formatter class specification. * * @return A formatted string * * @see java.util.Formatter * @since 1.5 */ public static String format(String format, Object... args) { return new Formatter().format(format, args).toString(); } /** * Returns a formatted string using the specified locale, format string, * and arguments. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @param format * A <a href="../util/Formatter.html#syntax">format string</a> * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The number of arguments is * variable and may be zero. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * <cite>The Java Virtual Machine Specification</cite>. * The behaviour on a * {@code null} argument depends on the * <a href="../util/Formatter.html#syntax">conversion</a>. * * @throws java.util.IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the <a * href="../util/Formatter.html#detail">Details</a> section of the * formatter class specification * * @return A formatted string * * @see java.util.Formatter * @since 1.5 */ public static String format(Locale l, String format, Object... args) { return new Formatter(l).format(format, args).toString(); } /** * Formats using this string as the format string, and the supplied * arguments. * * @implSpec This method is equivalent to {@code String.format(this, args)}. * * @param args * Arguments referenced by the format specifiers in this string. * * @return A formatted string * * @see java.lang.String#format(String,Object...) * @see java.util.Formatter * * @since 15 * */ public String formatted(Object... args) { return new Formatter().format(this, args).toString(); } /** * Returns the string representation of the {@code Object} argument. * * @param obj an {@code Object}. * @return if the argument is {@code null}, then a string equal to * {@code "null"}; otherwise, the value of * {@code obj.toString()} is returned. * @see java.lang.Object#toString() */ public static String valueOf(Object obj) { return (obj == null) ? "null" : obj.toString(); } /** * Returns the string representation of the {@code char} array * argument. The contents of the character array are copied; subsequent * modification of the character array does not affect the returned * string. * * @param data the character array. * @return a {@code String} that contains the characters of the * character array. */ public static String valueOf(char data[]) { return new String(data); } /** * Returns the string representation of a specific subarray of the * {@code char} array argument. * <p> * The {@code offset} argument is the index of the first * character of the subarray. The {@code count} argument * specifies the length of the subarray. The contents of the subarray * are copied; subsequent modification of the character array does not * affect the returned string. * * @param data the character array. * @param offset initial offset of the subarray. * @param count length of the subarray. * @return a {@code String} that contains the characters of the * specified subarray of the character array. * @throws IndexOutOfBoundsException if {@code offset} is * negative, or {@code count} is negative, or * {@code offset+count} is larger than * {@code data.length}. */ public static String valueOf(char data[], int offset, int count) { return new String(data, offset, count); } /** * Equivalent to {@link #valueOf(char[], int, int)}. * * @param data the character array. * @param offset initial offset of the subarray. * @param count length of the subarray. * @return a {@code String} that contains the characters of the * specified subarray of the character array. * @throws IndexOutOfBoundsException if {@code offset} is * negative, or {@code count} is negative, or * {@code offset+count} is larger than * {@code data.length}. */ public static String copyValueOf(char data[], int offset, int count) { return new String(data, offset, count); } /** * Equivalent to {@link #valueOf(char[])}. * * @param data the character array. * @return a {@code String} that contains the characters of the * character array. */ public static String copyValueOf(char data[]) { return new String(data); } /** * Returns the string representation of the {@code boolean} argument. * * @param b a {@code boolean}. * @return if the argument is {@code true}, a string equal to * {@code "true"} is returned; otherwise, a string equal to * {@code "false"} is returned. */ public static String valueOf(boolean b) { return b ? "true" : "false"; } /** * Returns the string representation of the {@code char} * argument. * * @param c a {@code char}. * @return a string of length {@code 1} containing * as its single character the argument {@code c}. */ public static String valueOf(char c) { if (COMPACT_STRINGS && StringLatin1.canEncode(c)) { return new String(StringLatin1.toBytes(c), LATIN1); } return new String(StringUTF16.toBytes(c), UTF16); } /** * Returns the string representation of the {@code int} argument. * <p> * The representation is exactly the one returned by the * {@code Integer.toString} method of one argument. * * @param i an {@code int}. * @return a string representation of the {@code int} argument. * @see java.lang.Integer#toString(int, int) */ public static String valueOf(int i) { return Integer.toString(i); } /** * Returns the string representation of the {@code long} argument. * <p> * The representation is exactly the one returned by the * {@code Long.toString} method of one argument. * * @param l a {@code long}. * @return a string representation of the {@code long} argument. * @see java.lang.Long#toString(long) */ public static String valueOf(long l) { return Long.toString(l); } /** * Returns the string representation of the {@code float} argument. * <p> * The representation is exactly the one returned by the * {@code Float.toString} method of one argument. * * @param f a {@code float}. * @return a string representation of the {@code float} argument. * @see java.lang.Float#toString(float) */ public static String valueOf(float f) { return Float.toString(f); } /** * Returns the string representation of the {@code double} argument. * <p> * The representation is exactly the one returned by the * {@code Double.toString} method of one argument. * * @param d a {@code double}. * @return a string representation of the {@code double} argument. * @see java.lang.Double#toString(double) */ public static String valueOf(double d) { return Double.toString(d); } /** * Returns a canonical representation for the string object. * <p> * A pool of strings, initially empty, is maintained privately by the * class {@code String}. * <p> * When the intern method is invoked, if the pool already contains a * string equal to this {@code String} object as determined by * the {@link #equals(Object)} method, then the string from the pool is * returned. Otherwise, this {@code String} object is added to the * pool and a reference to this {@code String} object is returned. * <p> * It follows that for any two strings {@code s} and {@code t}, * {@code s.intern() == t.intern()} is {@code true} * if and only if {@code s.equals(t)} is {@code true}. * <p> * All literal strings and string-valued constant expressions are * interned. String literals are defined in section {@jls 3.10.5} of the * <cite>The Java Language Specification</cite>. * * @return a string that has the same contents as this string, but is * guaranteed to be from a pool of unique strings. */ public native String intern(); /** * Returns a string whose value is the concatenation of this * string repeated {@code count} times. * <p> * If this string is empty or count is zero then the empty * string is returned. * * @param count number of times to repeat * * @return A string composed of this string repeated * {@code count} times or the empty string if this * string is empty or count is zero * * @throws IllegalArgumentException if the {@code count} is * negative. * * @since 11 */ public String repeat(int count) { if (count < 0) { throw new IllegalArgumentException("count is negative: " + count); } if (count == 1) { return this; } final int len = value.length; if (len == 0 || count == 0) { return ""; } if (Integer.MAX_VALUE / count < len) { throw new OutOfMemoryError("Required length exceeds implementation limit"); } if (len == 1) { final byte[] single = new byte[count]; Arrays.fill(single, value[0]); return new String(single, coder); } final int limit = len * count; final byte[] multiple = new byte[limit]; System.arraycopy(value, 0, multiple, 0, len); int copied = len; for (; copied < limit - copied; copied <<= 1) { System.arraycopy(multiple, 0, multiple, copied, copied); } System.arraycopy(multiple, 0, multiple, copied, limit - copied); return new String(multiple, coder); } //////////////////////////////////////////////////////////////// /** * Copy character bytes from this string into dst starting at dstBegin. * This method doesn't perform any range checking. * * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two * coders are different, and dst is big enough (range check) * * @param dstBegin the char index, not offset of byte[] * @param coder the coder of dst[] */ void getBytes(byte[] dst, int dstBegin, byte coder) { if (coder() == coder) { System.arraycopy(value, 0, dst, dstBegin << coder, value.length); } else { // this.coder == LATIN && coder == UTF16 StringLatin1.inflate(value, 0, dst, dstBegin, value.length); } } /** * Copy character bytes from this string into dst starting at dstBegin. * This method doesn't perform any range checking. * * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two * coders are different, and dst is big enough (range check) * * @param srcPos the char index, not offset of byte[] * @param dstBegin the char index to start from * @param coder the coder of dst[] * @param length the amount of copied chars */ void getBytes(byte[] dst, int srcPos, int dstBegin, byte coder, int length) { if (coder() == coder) { System.arraycopy(value, srcPos << coder, dst, dstBegin << coder, length << coder); } else { // this.coder == LATIN && coder == UTF16 StringLatin1.inflate(value, srcPos, dst, dstBegin, length); } } /* * Package private constructor. Trailing Void argument is there for * disambiguating it against other (public) constructors. * * Stores the char[] value into a byte[] that each byte represents * the8 low-order bits of the corresponding character, if the char[] * contains only latin1 character. Or a byte[] that stores all * characters in their byte sequences defined by the {@code StringUTF16}. */ String(char[] value, int off, int len, Void sig) { if (len == 0) { this.value = "".value; this.coder = "".coder; return; } if (COMPACT_STRINGS) { byte[] val = StringUTF16.compress(value, off, len); if (val != null) { this.value = val; this.coder = LATIN1; return; } } this.coder = UTF16; this.value = StringUTF16.toBytes(value, off, len); } /* * Package private constructor. Trailing Void argument is there for * disambiguating it against other (public) constructors. */ String(AbstractStringBuilder asb, Void sig) { byte[] val = asb.getValue(); int length = asb.length(); if (asb.isLatin1()) { this.coder = LATIN1; this.value = Arrays.copyOfRange(val, 0, length); } else { if (COMPACT_STRINGS) { byte[] buf = StringUTF16.compress(val, 0, length); if (buf != null) { this.coder = LATIN1; this.value = buf; return; } } this.coder = UTF16; this.value = Arrays.copyOfRange(val, 0, length << 1); } } /* * Package private constructor which shares value array for speed. */ String(byte[] value, byte coder) { this.value = value; this.coder = coder; } byte coder() { return COMPACT_STRINGS ? coder : UTF16; } byte[] value() { return value; } boolean isLatin1() { return COMPACT_STRINGS && coder == LATIN1; } @Native static final byte LATIN1 = 0; @Native static final byte UTF16 = 1; /* * StringIndexOutOfBoundsException if {@code index} is * negative or greater than or equal to {@code length}. */ static void checkIndex(int index, int length) { if (index < 0 || index >= length) { throw new StringIndexOutOfBoundsException("index " + index + ", length " + length); } } /* * StringIndexOutOfBoundsException if {@code offset} * is negative or greater than {@code length}. */ static void checkOffset(int offset, int length) { if (offset < 0 || offset > length) { throw new StringIndexOutOfBoundsException("offset " + offset + ", length " + length); } } /* * Check {@code offset}, {@code count} against {@code 0} and {@code length} * bounds. * * @throws StringIndexOutOfBoundsException * If {@code offset} is negative, {@code count} is negative, * or {@code offset} is greater than {@code length - count} */ static void checkBoundsOffCount(int offset, int count, int length) { if (offset < 0 || count < 0 || offset > length - count) { throw new StringIndexOutOfBoundsException( "offset " + offset + ", count " + count + ", length " + length); } } /* * Check {@code begin}, {@code end} against {@code 0} and {@code length} * bounds. * * @throws StringIndexOutOfBoundsException * If {@code begin} is negative, {@code begin} is greater than * {@code end}, or {@code end} is greater than {@code length}. */ static void checkBoundsBeginEnd(int begin, int end, int length) { if (begin < 0 || begin > end || end > length) { throw new StringIndexOutOfBoundsException( "begin " + begin + ", end " + end + ", length " + length); } } /** * Returns the string representation of the {@code codePoint} * argument. * * @param codePoint a {@code codePoint}. * @return a string of length {@code 1} or {@code 2} containing * as its single character the argument {@code codePoint}. * @throws IllegalArgumentException if the specified * {@code codePoint} is not a {@linkplain Character#isValidCodePoint * valid Unicode code point}. */ static String valueOfCodePoint(int codePoint) { if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) { return new String(StringLatin1.toBytes((char)codePoint), LATIN1); } else if (Character.isBmpCodePoint(codePoint)) { return new String(StringUTF16.toBytes((char)codePoint), UTF16); } else if (Character.isSupplementaryCodePoint(codePoint)) { return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16); } throw new IllegalArgumentException( format("Not a valid Unicode code point: 0x%X", codePoint)); } /** * Returns an {@link Optional} containing the nominal descriptor for this * instance, which is the instance itself. * * @return an {@link Optional} describing the {@linkplain String} instance * @since 12 */ @Override public Optional<String> describeConstable() { return Optional.of(this); } /** * Resolves this instance as a {@link ConstantDesc}, the result of which is * the instance itself. * * @param lookup ignored * @return the {@linkplain String} instance * @since 12 */ @Override public String resolveConstantDesc(MethodHandles.Lookup lookup) { return this; } }
⏎ java/lang/String.java
Or download all of them as a single archive file:
File name: java.base-17.0.5-src.zip File size: 8883851 bytes Release date: 2022-09-13 Download
2023-09-26, 103271👍, 1💬
Popular Posts:
JDK 11 jdk.compiler.jmod is the JMOD file for JDK 11 Compiler tool, which can be invoked by the "jav...
Apache Ant is a Java-based build tool. In theory, it is kind of like make, without make's wrinkles. ...
Apache ZooKeeper is an open-source server which enables highly reliable distributed coordination. Ap...
What Is commons-codec-1.4.jar? commons-codec-1.4.jar is the JAR file for Apache Commons Codec 1.4, w...
What Is jaxb-impl-2.1.12.jar? Java Architecture for XML Binding (JAXB) is a Java API that allows Jav...