Categories:
Audio (13)
Biotech (29)
Bytecode (36)
Database (77)
Framework (7)
Game (7)
General (507)
Graphics (53)
I/O (35)
IDE (2)
JAR Tools (102)
JavaBeans (21)
JDBC (121)
JDK (426)
JSP (20)
Logging (108)
Mail (58)
Messaging (8)
Network (84)
PDF (97)
Report (7)
Scripting (84)
Security (32)
Server (121)
Servlet (26)
SOAP (24)
Testing (54)
Web (15)
XML (322)
Collections:
Other Resources:
JRE 8 rt.jar - java.* Package Source Code
JRE 8 rt.jar is the JAR file for JRE 8 RT (Runtime) libraries.
JRE (Java Runtime) 8 is the runtime environment included in JDK 8.
JRE 8 rt.jar libraries are divided into 6 packages:
com.* - Internal Oracle and Sun Microsystems libraries java.* - Standard Java API libraries. javax.* - Extended Java API libraries. jdk.* - JDK supporting libraries. org.* - Third party libraries. sun.* - Old libraries developed by Sun Microsystems.
JAR File Information:
Directory of C:\fyicenter\jdk-1.8.0_191\jre\lib
63,596,151 rt.jar
Here is the list of Java classes of the java.* package in JRE 1.8.0_191 rt.jar. Java source codes are also provided.
✍: FYIcenter
⏎ java/awt/image/DirectColorModel.java
/*
* Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/
package java.awt.image;
import java.awt.color.ColorSpace;
import java.awt.Transparency;
/**
* The <code>DirectColorModel</code> class is a <code>ColorModel</code>
* class that works with pixel values that represent RGB
* color and alpha information as separate samples and that pack all
* samples for a single pixel into a single int, short, or byte quantity.
* This class can be used only with ColorSpaces of type ColorSpace.TYPE_RGB.
* In addition, for each component of the ColorSpace, the minimum
* normalized component value obtained via the <code>getMinValue()</code>
* method of ColorSpace must be 0.0, and the maximum value obtained via
* the <code>getMaxValue()</code> method must be 1.0 (these min/max
* values are typical for RGB spaces).
* There must be three color samples in the pixel values and there can
* be a single alpha sample. For those methods that use a primitive array
* pixel representation of type <code>transferType</code>, the array
* length is always one. The transfer
* types supported are DataBuffer.TYPE_BYTE,
* DataBuffer.TYPE_USHORT, and DataBuffer.TYPE_INT.
* Color and alpha samples are stored in the single
* element of the array in bits indicated by bit masks. Each bit mask
* must be contiguous and masks must not overlap. The same masks apply to
* the single int pixel representation used by other methods. The
* correspondence of masks and color/alpha samples is as follows:
* <ul>
* <li> Masks are identified by indices running from 0 through 2
* if no alpha is present, or 3 if an alpha is present.
* <li> The first three indices refer to color samples;
* index 0 corresponds to red, index 1 to green, and index 2 to blue.
* <li> Index 3 corresponds to the alpha sample, if present.
* </ul>
* <p>
* The translation from pixel values to color/alpha components for
* display or processing purposes is a one-to-one correspondence of
* samples to components. A <code>DirectColorModel</code> is
* typically used with image data which uses masks to define packed
* samples. For example, a <code>DirectColorModel</code> can be used in
* conjunction with a <code>SinglePixelPackedSampleModel</code> to
* construct a {@link BufferedImage}. Normally the masks used by the
* {@link SampleModel} and the <code>ColorModel</code> would be the
* same. However, if they are different, the color interpretation
* of pixel data will be done according to the masks of the
* <code>ColorModel</code>.
* <p>
* A single int pixel representation is valid for all objects of this
* class, since it is always possible to represent pixel values used with
* this class in a single int. Therefore, methods which use this
* representation will not throw an <code>IllegalArgumentException</code>
* due to an invalid pixel value.
* <p>
* This color model is similar to an X11 TrueColor visual.
* The default RGB ColorModel specified by the
* {@link ColorModel#getRGBdefault() getRGBdefault} method is a
* <code>DirectColorModel</code> with the following parameters:
* <pre>
* Number of bits: 32
* Red mask: 0x00ff0000
* Green mask: 0x0000ff00
* Blue mask: 0x000000ff
* Alpha mask: 0xff000000
* Color space: sRGB
* isAlphaPremultiplied: False
* Transparency: Transparency.TRANSLUCENT
* transferType: DataBuffer.TYPE_INT
* </pre>
* <p>
* Many of the methods in this class are final. This is because the
* underlying native graphics code makes assumptions about the layout
* and operation of this class and those assumptions are reflected in
* the implementations of the methods here that are marked final. You
* can subclass this class for other reasons, but you cannot override
* or modify the behavior of those methods.
*
* @see ColorModel
* @see ColorSpace
* @see SinglePixelPackedSampleModel
* @see BufferedImage
* @see ColorModel#getRGBdefault
*
*/
public class DirectColorModel extends PackedColorModel {
private int red_mask;
private int green_mask;
private int blue_mask;
private int alpha_mask;
private int red_offset;
private int green_offset;
private int blue_offset;
private int alpha_offset;
private int red_scale;
private int green_scale;
private int blue_scale;
private int alpha_scale;
private boolean is_LinearRGB;
private int lRGBprecision;
private byte[] tosRGB8LUT;
private byte[] fromsRGB8LUT8;
private short[] fromsRGB8LUT16;
/**
* Constructs a <code>DirectColorModel</code> from the specified masks
* that indicate which bits in an <code>int</code> pixel representation
* contain the red, green and blue color samples. As pixel values do not
* contain alpha information, all pixels are treated as opaque, which
* means that alpha = 1.0. All of the bits
* in each mask must be contiguous and fit in the specified number
* of least significant bits of an <code>int</code> pixel representation.
* The <code>ColorSpace</code> is the default sRGB space. The
* transparency value is Transparency.OPAQUE. The transfer type
* is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT,
* or DataBuffer.TYPE_INT that can hold a single pixel.
* @param bits the number of bits in the pixel values; for example,
* the sum of the number of bits in the masks.
* @param rmask specifies a mask indicating which bits in an
* integer pixel contain the red component
* @param gmask specifies a mask indicating which bits in an
* integer pixel contain the green component
* @param bmask specifies a mask indicating which bits in an
* integer pixel contain the blue component
*
*/
public DirectColorModel(int bits,
int rmask, int gmask, int bmask) {
this(bits, rmask, gmask, bmask, 0);
}
/**
* Constructs a <code>DirectColorModel</code> from the specified masks
* that indicate which bits in an <code>int</code> pixel representation
* contain the red, green and blue color samples and the alpha sample,
* if present. If <code>amask</code> is 0, pixel values do not contain
* alpha information and all pixels are treated as opaque, which means
* that alpha = 1.0. All of the bits in each mask must
* be contiguous and fit in the specified number of least significant bits
* of an <code>int</code> pixel representation. Alpha, if present, is not
* premultiplied. The <code>ColorSpace</code> is the default sRGB space.
* The transparency value is Transparency.OPAQUE if no alpha is
* present, or Transparency.TRANSLUCENT otherwise. The transfer type
* is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT,
* or DataBuffer.TYPE_INT that can hold a single pixel.
* @param bits the number of bits in the pixel values; for example,
* the sum of the number of bits in the masks.
* @param rmask specifies a mask indicating which bits in an
* integer pixel contain the red component
* @param gmask specifies a mask indicating which bits in an
* integer pixel contain the green component
* @param bmask specifies a mask indicating which bits in an
* integer pixel contain the blue component
* @param amask specifies a mask indicating which bits in an
* integer pixel contain the alpha component
*/
public DirectColorModel(int bits, int rmask, int gmask,
int bmask, int amask) {
super (ColorSpace.getInstance(ColorSpace.CS_sRGB),
bits, rmask, gmask, bmask, amask, false,
amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT,
ColorModel.getDefaultTransferType(bits));
setFields();
}
/**
* Constructs a <code>DirectColorModel</code> from the specified
* parameters. Color components are in the specified
* <code>ColorSpace</code>, which must be of type ColorSpace.TYPE_RGB
* and have minimum normalized component values which are all 0.0
* and maximum values which are all 1.0.
* The masks specify which bits in an <code>int</code> pixel
* representation contain the red, green and blue color samples and
* the alpha sample, if present. If <code>amask</code> is 0, pixel
* values do not contain alpha information and all pixels are treated
* as opaque, which means that alpha = 1.0. All of the
* bits in each mask must be contiguous and fit in the specified number
* of least significant bits of an <code>int</code> pixel
* representation. If there is alpha, the <code>boolean</code>
* <code>isAlphaPremultiplied</code> specifies how to interpret
* color and alpha samples in pixel values. If the <code>boolean</code>
* is <code>true</code>, color samples are assumed to have been
* multiplied by the alpha sample. The transparency value is
* Transparency.OPAQUE, if no alpha is present, or
* Transparency.TRANSLUCENT otherwise. The transfer type
* is the type of primitive array used to represent pixel values and
* must be one of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or
* DataBuffer.TYPE_INT.
* @param space the specified <code>ColorSpace</code>
* @param bits the number of bits in the pixel values; for example,
* the sum of the number of bits in the masks.
* @param rmask specifies a mask indicating which bits in an
* integer pixel contain the red component
* @param gmask specifies a mask indicating which bits in an
* integer pixel contain the green component
* @param bmask specifies a mask indicating which bits in an
* integer pixel contain the blue component
* @param amask specifies a mask indicating which bits in an
* integer pixel contain the alpha component
* @param isAlphaPremultiplied <code>true</code> if color samples are
* premultiplied by the alpha sample; <code>false</code> otherwise
* @param transferType the type of array used to represent pixel values
* @throws IllegalArgumentException if <code>space</code> is not a
* TYPE_RGB space or if the min/max normalized component
* values are not 0.0/1.0.
*/
public DirectColorModel(ColorSpace space, int bits, int rmask,
int gmask, int bmask, int amask,
boolean isAlphaPremultiplied,
int transferType) {
super (space, bits, rmask, gmask, bmask, amask,
isAlphaPremultiplied,
amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT,
transferType);
if (ColorModel.isLinearRGBspace(colorSpace)) {
is_LinearRGB = true;
if (maxBits <= 8) {
lRGBprecision = 8;
tosRGB8LUT = ColorModel.getLinearRGB8TosRGB8LUT();
fromsRGB8LUT8 = ColorModel.getsRGB8ToLinearRGB8LUT();
} else {
lRGBprecision = 16;
tosRGB8LUT = ColorModel.getLinearRGB16TosRGB8LUT();
fromsRGB8LUT16 = ColorModel.getsRGB8ToLinearRGB16LUT();
}
} else if (!is_sRGB) {
for (int i = 0; i < 3; i++) {
// super constructor checks that space is TYPE_RGB
// check here that min/max are all 0.0/1.0
if ((space.getMinValue(i) != 0.0f) ||
(space.getMaxValue(i) != 1.0f)) {
throw new IllegalArgumentException(
"Illegal min/max RGB component value");
}
}
}
setFields();
}
/**
* Returns the mask indicating which bits in an <code>int</code> pixel
* representation contain the red color component.
* @return the mask, which indicates which bits of the <code>int</code>
* pixel representation contain the red color sample.
*/
final public int getRedMask() {
return maskArray[0];
}
/**
* Returns the mask indicating which bits in an <code>int</code> pixel
* representation contain the green color component.
* @return the mask, which indicates which bits of the <code>int</code>
* pixel representation contain the green color sample.
*/
final public int getGreenMask() {
return maskArray[1];
}
/**
* Returns the mask indicating which bits in an <code>int</code> pixel
* representation contain the blue color component.
* @return the mask, which indicates which bits of the <code>int</code>
* pixel representation contain the blue color sample.
*/
final public int getBlueMask() {
return maskArray[2];
}
/**
* Returns the mask indicating which bits in an <code>int</code> pixel
* representation contain the alpha component.
* @return the mask, which indicates which bits of the <code>int</code>
* pixel representation contain the alpha sample.
*/
final public int getAlphaMask() {
if (supportsAlpha) {
return maskArray[3];
} else {
return 0;
}
}
/*
* Given an int pixel in this ColorModel's ColorSpace, converts
* it to the default sRGB ColorSpace and returns the R, G, and B
* components as float values between 0.0 and 1.0.
*/
private float[] getDefaultRGBComponents(int pixel) {
int components[] = getComponents(pixel, null, 0);
float norm[] = getNormalizedComponents(components, 0, null, 0);
// Note that getNormalizedComponents returns non-premultiplied values
return colorSpace.toRGB(norm);
}
private int getsRGBComponentFromsRGB(int pixel, int idx) {
int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]);
if (isAlphaPremultiplied) {
int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
c = (a == 0) ? 0 :
(int) (((c * scaleFactors[idx]) * 255.0f /
(a * scaleFactors[3])) + 0.5f);
} else if (scaleFactors[idx] != 1.0f) {
c = (int) ((c * scaleFactors[idx]) + 0.5f);
}
return c;
}
private int getsRGBComponentFromLinearRGB(int pixel, int idx) {
int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]);
if (isAlphaPremultiplied) {
float factor = (float) ((1 << lRGBprecision) - 1);
int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
c = (a == 0) ? 0 :
(int) (((c * scaleFactors[idx]) * factor /
(a * scaleFactors[3])) + 0.5f);
} else if (nBits[idx] != lRGBprecision) {
if (lRGBprecision == 16) {
c = (int) ((c * scaleFactors[idx] * 257.0f) + 0.5f);
} else {
c = (int) ((c * scaleFactors[idx]) + 0.5f);
}
}
// now range of c is 0-255 or 0-65535, depending on lRGBprecision
return tosRGB8LUT[c] & 0xff;
}
/**
* Returns the red color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* as an <code>int</code>.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the red value
* is 0.
* @param pixel the specified pixel
* @return the red color component for the specified pixel, from
* 0 to 255 in the sRGB <code>ColorSpace</code>.
*/
final public int getRed(int pixel) {
if (is_sRGB) {
return getsRGBComponentFromsRGB(pixel, 0);
} else if (is_LinearRGB) {
return getsRGBComponentFromLinearRGB(pixel, 0);
}
float rgb[] = getDefaultRGBComponents(pixel);
return (int) (rgb[0] * 255.0f + 0.5f);
}
/**
* Returns the green color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* as an <code>int</code>.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the green value
* is 0.
* @param pixel the specified pixel
* @return the green color component for the specified pixel, from
* 0 to 255 in the sRGB <code>ColorSpace</code>.
*/
final public int getGreen(int pixel) {
if (is_sRGB) {
return getsRGBComponentFromsRGB(pixel, 1);
} else if (is_LinearRGB) {
return getsRGBComponentFromLinearRGB(pixel, 1);
}
float rgb[] = getDefaultRGBComponents(pixel);
return (int) (rgb[1] * 255.0f + 0.5f);
}
/**
* Returns the blue color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* as an <code>int</code>.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the blue value
* is 0.
* @param pixel the specified pixel
* @return the blue color component for the specified pixel, from
* 0 to 255 in the sRGB <code>ColorSpace</code>.
*/
final public int getBlue(int pixel) {
if (is_sRGB) {
return getsRGBComponentFromsRGB(pixel, 2);
} else if (is_LinearRGB) {
return getsRGBComponentFromLinearRGB(pixel, 2);
}
float rgb[] = getDefaultRGBComponents(pixel);
return (int) (rgb[2] * 255.0f + 0.5f);
}
/**
* Returns the alpha component for the specified pixel, scaled
* from 0 to 255. The pixel value is specified as an <code>int</code>.
* @param pixel the specified pixel
* @return the value of the alpha component of <code>pixel</code>
* from 0 to 255.
*/
final public int getAlpha(int pixel) {
if (!supportsAlpha) return 255;
int a = ((pixel & maskArray[3]) >>> maskOffsets[3]);
if (scaleFactors[3] != 1.0f) {
a = (int)(a * scaleFactors[3] + 0.5f);
}
return a;
}
/**
* Returns the color/alpha components of the pixel in the default
* RGB color model format. A color conversion is done if necessary.
* The pixel value is specified as an <code>int</code>.
* The returned value is in a non pre-multiplied format. Thus, if
* the alpha is premultiplied, this method divides it out of the
* color components. If the alpha value is 0, for example, the color
* values are each 0.
* @param pixel the specified pixel
* @return the RGB value of the color/alpha components of the specified
* pixel.
* @see ColorModel#getRGBdefault
*/
final public int getRGB(int pixel) {
if (is_sRGB || is_LinearRGB) {
return (getAlpha(pixel) << 24)
| (getRed(pixel) << 16)
| (getGreen(pixel) << 8)
| (getBlue(pixel) << 0);
}
float rgb[] = getDefaultRGBComponents(pixel);
return (getAlpha(pixel) << 24)
| (((int) (rgb[0] * 255.0f + 0.5f)) << 16)
| (((int) (rgb[1] * 255.0f + 0.5f)) << 8)
| (((int) (rgb[2] * 255.0f + 0.5f)) << 0);
}
/**
* Returns the red color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* by an array of data elements of type <code>transferType</code> passed
* in as an object reference.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the red value
* is 0.
* If <code>inData</code> is not a primitive array of type
* <code>transferType</code>, a <code>ClassCastException</code> is
* thrown. An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>inData</code> is not large enough to hold a
* pixel value for this <code>ColorModel</code>. Since
* <code>DirectColorModel</code> can be subclassed, subclasses inherit
* the implementation of this method and if they don't override it
* then they throw an exception if they use an unsupported
* <code>transferType</code>.
* An <code>UnsupportedOperationException</code> is thrown if this
* <code>transferType</code> is not supported by this
* <code>ColorModel</code>.
* @param inData the array containing the pixel value
* @return the value of the red component of the specified pixel.
* @throws ArrayIndexOutOfBoundsException if <code>inData</code> is not
* large enough to hold a pixel value for this color model
* @throws ClassCastException if <code>inData</code> is not a
* primitive array of type <code>transferType</code>
* @throws UnsupportedOperationException if this <code>transferType</code>
* is not supported by this color model
*/
public int getRed(Object inData) {
int pixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])inData;
pixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])inData;
pixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])inData;
pixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getRed(pixel);
}
/**
* Returns the green color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* by an array of data elements of type <code>transferType</code> passed
* in as an object reference.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the green value
* is 0. If <code>inData</code> is not a primitive array of type
* <code>transferType</code>, a <code>ClassCastException</code> is thrown.
* An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>inData</code> is not large enough to hold a pixel
* value for this <code>ColorModel</code>. Since
* <code>DirectColorModel</code> can be subclassed, subclasses inherit
* the implementation of this method and if they don't override it
* then they throw an exception if they use an unsupported
* <code>transferType</code>.
* An <code>UnsupportedOperationException</code> is
* thrown if this <code>transferType</code> is not supported by this
* <code>ColorModel</code>.
* @param inData the array containing the pixel value
* @return the value of the green component of the specified pixel.
* @throws ArrayIndexOutOfBoundsException if <code>inData</code> is not
* large enough to hold a pixel value for this color model
* @throws ClassCastException if <code>inData</code> is not a
* primitive array of type <code>transferType</code>
* @throws UnsupportedOperationException if this <code>transferType</code>
* is not supported by this color model
*/
public int getGreen(Object inData) {
int pixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])inData;
pixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])inData;
pixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])inData;
pixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getGreen(pixel);
}
/**
* Returns the blue color component for the specified pixel, scaled
* from 0 to 255 in the default RGB <code>ColorSpace</code>, sRGB. A
* color conversion is done if necessary. The pixel value is specified
* by an array of data elements of type <code>transferType</code> passed
* in as an object reference.
* The returned value is a non pre-multiplied value. Thus, if the
* alpha is premultiplied, this method divides it out before returning
* the value. If the alpha value is 0, for example, the blue value
* is 0. If <code>inData</code> is not a primitive array of type
* <code>transferType</code>, a <code>ClassCastException</code> is thrown.
* An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>inData</code> is not large enough to hold a pixel
* value for this <code>ColorModel</code>. Since
* <code>DirectColorModel</code> can be subclassed, subclasses inherit
* the implementation of this method and if they don't override it
* then they throw an exception if they use an unsupported
* <code>transferType</code>.
* An <code>UnsupportedOperationException</code> is
* thrown if this <code>transferType</code> is not supported by this
* <code>ColorModel</code>.
* @param inData the array containing the pixel value
* @return the value of the blue component of the specified pixel.
* @throws ArrayIndexOutOfBoundsException if <code>inData</code> is not
* large enough to hold a pixel value for this color model
* @throws ClassCastException if <code>inData</code> is not a
* primitive array of type <code>transferType</code>
* @throws UnsupportedOperationException if this <code>transferType</code>
* is not supported by this color model
*/
public int getBlue(Object inData) {
int pixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])inData;
pixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])inData;
pixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])inData;
pixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getBlue(pixel);
}
/**
* Returns the alpha component for the specified pixel, scaled
* from 0 to 255. The pixel value is specified by an array of data
* elements of type <code>transferType</code> passed in as an object
* reference.
* If <code>inData</code> is not a primitive array of type
* <code>transferType</code>, a <code>ClassCastException</code> is
* thrown. An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>inData</code> is not large enough to hold a pixel
* value for this <code>ColorModel</code>. Since
* <code>DirectColorModel</code> can be subclassed, subclasses inherit
* the implementation of this method and if they don't override it
* then they throw an exception if they use an unsupported
* <code>transferType</code>.
* If this <code>transferType</code> is not supported, an
* <code>UnsupportedOperationException</code> is thrown.
* @param inData the specified pixel
* @return the alpha component of the specified pixel, scaled from
* 0 to 255.
* @exception ClassCastException if <code>inData</code>
* is not a primitive array of type <code>transferType</code>
* @exception ArrayIndexOutOfBoundsException if
* <code>inData</code> is not large enough to hold a pixel value
* for this <code>ColorModel</code>
* @exception UnsupportedOperationException if this
* <code>tranferType</code> is not supported by this
* <code>ColorModel</code>
*/
public int getAlpha(Object inData) {
int pixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])inData;
pixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])inData;
pixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])inData;
pixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getAlpha(pixel);
}
/**
* Returns the color/alpha components for the specified pixel in the
* default RGB color model format. A color conversion is done if
* necessary. The pixel value is specified by an array of data
* elements of type <code>transferType</code> passed in as an object
* reference. If <code>inData</code> is not a primitive array of type
* <code>transferType</code>, a <code>ClassCastException</code> is
* thrown. An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>inData</code> is not large enough to hold a pixel
* value for this <code>ColorModel</code>.
* The returned value is in a non pre-multiplied format. Thus, if
* the alpha is premultiplied, this method divides it out of the
* color components. If the alpha value is 0, for example, the color
* values is 0. Since <code>DirectColorModel</code> can be
* subclassed, subclasses inherit the implementation of this method
* and if they don't override it then
* they throw an exception if they use an unsupported
* <code>transferType</code>.
*
* @param inData the specified pixel
* @return the color and alpha components of the specified pixel.
* @exception UnsupportedOperationException if this
* <code>transferType</code> is not supported by this
* <code>ColorModel</code>
* @see ColorModel#getRGBdefault
*/
public int getRGB(Object inData) {
int pixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])inData;
pixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])inData;
pixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])inData;
pixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getRGB(pixel);
}
/**
* Returns a data element array representation of a pixel in this
* <code>ColorModel</code>, given an integer pixel representation in the
* default RGB color model.
* This array can then be passed to the <code>setDataElements</code>
* method of a <code>WritableRaster</code> object. If the pixel variable
* is <code>null</code>, a new array is allocated. If <code>pixel</code>
* is not <code>null</code>, it must be a primitive array of type
* <code>transferType</code>; otherwise, a
* <code>ClassCastException</code> is thrown. An
* <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>pixel</code> is not large enough to hold a pixel
* value for this <code>ColorModel</code>. The pixel array is returned.
* Since <code>DirectColorModel</code> can be subclassed, subclasses
* inherit the implementation of this method and if they don't
* override it then they throw an exception if they use an unsupported
* <code>transferType</code>.
*
* @param rgb the integer pixel representation in the default RGB
* color model
* @param pixel the specified pixel
* @return an array representation of the specified pixel in this
* <code>ColorModel</code>
* @exception ClassCastException if <code>pixel</code>
* is not a primitive array of type <code>transferType</code>
* @exception ArrayIndexOutOfBoundsException if
* <code>pixel</code> is not large enough to hold a pixel value
* for this <code>ColorModel</code>
* @exception UnsupportedOperationException if this
* <code>transferType</code> is not supported by this
* <code>ColorModel</code>
* @see WritableRaster#setDataElements
* @see SampleModel#setDataElements
*/
public Object getDataElements(int rgb, Object pixel) {
//REMIND: maybe more efficient not to use int array for
//DataBuffer.TYPE_USHORT and DataBuffer.TYPE_INT
int intpixel[] = null;
if (transferType == DataBuffer.TYPE_INT &&
pixel != null) {
intpixel = (int[])pixel;
intpixel[0] = 0;
} else {
intpixel = new int[1];
}
ColorModel defaultCM = ColorModel.getRGBdefault();
if (this == defaultCM || equals(defaultCM)) {
intpixel[0] = rgb;
return intpixel;
}
int red, grn, blu, alp;
red = (rgb>>16) & 0xff;
grn = (rgb>>8) & 0xff;
blu = rgb & 0xff;
if (is_sRGB || is_LinearRGB) {
int precision;
float factor;
if (is_LinearRGB) {
if (lRGBprecision == 8) {
red = fromsRGB8LUT8[red] & 0xff;
grn = fromsRGB8LUT8[grn] & 0xff;
blu = fromsRGB8LUT8[blu] & 0xff;
precision = 8;
factor = 1.0f / 255.0f;
} else {
red = fromsRGB8LUT16[red] & 0xffff;
grn = fromsRGB8LUT16[grn] & 0xffff;
blu = fromsRGB8LUT16[blu] & 0xffff;
precision = 16;
factor = 1.0f / 65535.0f;
}
} else {
precision = 8;
factor = 1.0f / 255.0f;
}
if (supportsAlpha) {
alp = (rgb>>24) & 0xff;
if (isAlphaPremultiplied) {
factor *= (alp * (1.0f / 255.0f));
precision = -1; // force component calculations below
}
if (nBits[3] != 8) {
alp = (int)
((alp * (1.0f / 255.0f) * ((1<<nBits[3]) - 1)) + 0.5f);
if (alp > ((1<<nBits[3]) - 1)) {
// fix 4412670 - see comment below
alp = (1<<nBits[3]) - 1;
}
}
intpixel[0] = alp << maskOffsets[3];
}
if (nBits[0] != precision) {
red = (int) ((red * factor * ((1<<nBits[0]) - 1)) + 0.5f);
}
if (nBits[1] != precision) {
grn = (int) ((grn * factor * ((1<<nBits[1]) - 1)) + 0.5f);
}
if (nBits[2] != precision) {
blu = (int) ((blu * factor * ((1<<nBits[2]) - 1)) + 0.5f);
}
} else {
// Need to convert the color
float[] norm = new float[3];
float factor = 1.0f / 255.0f;
norm[0] = red * factor;
norm[1] = grn * factor;
norm[2] = blu * factor;
norm = colorSpace.fromRGB(norm);
if (supportsAlpha) {
alp = (rgb>>24) & 0xff;
if (isAlphaPremultiplied) {
factor *= alp;
for (int i = 0; i < 3; i++) {
norm[i] *= factor;
}
}
if (nBits[3] != 8) {
alp = (int)
((alp * (1.0f / 255.0f) * ((1<<nBits[3]) - 1)) + 0.5f);
if (alp > ((1<<nBits[3]) - 1)) {
// fix 4412670 - see comment below
alp = (1<<nBits[3]) - 1;
}
}
intpixel[0] = alp << maskOffsets[3];
}
red = (int) ((norm[0] * ((1<<nBits[0]) - 1)) + 0.5f);
grn = (int) ((norm[1] * ((1<<nBits[1]) - 1)) + 0.5f);
blu = (int) ((norm[2] * ((1<<nBits[2]) - 1)) + 0.5f);
}
if (maxBits > 23) {
// fix 4412670 - for components of 24 or more bits
// some calculations done above with float precision
// may lose enough precision that the integer result
// overflows nBits, so we need to clamp.
if (red > ((1<<nBits[0]) - 1)) {
red = (1<<nBits[0]) - 1;
}
if (grn > ((1<<nBits[1]) - 1)) {
grn = (1<<nBits[1]) - 1;
}
if (blu > ((1<<nBits[2]) - 1)) {
blu = (1<<nBits[2]) - 1;
}
}
intpixel[0] |= (red << maskOffsets[0]) |
(grn << maskOffsets[1]) |
(blu << maskOffsets[2]);
switch (transferType) {
case DataBuffer.TYPE_BYTE: {
byte bdata[];
if (pixel == null) {
bdata = new byte[1];
} else {
bdata = (byte[])pixel;
}
bdata[0] = (byte)(0xff&intpixel[0]);
return bdata;
}
case DataBuffer.TYPE_USHORT:{
short sdata[];
if (pixel == null) {
sdata = new short[1];
} else {
sdata = (short[])pixel;
}
sdata[0] = (short)(intpixel[0]&0xffff);
return sdata;
}
case DataBuffer.TYPE_INT:
return intpixel;
}
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
/**
* Returns an array of unnormalized color/alpha components given a pixel
* in this <code>ColorModel</code>. The pixel value is specified as an
* <code>int</code>. If the <code>components</code> array is
* <code>null</code>, a new array is allocated. The
* <code>components</code> array is returned. Color/alpha components are
* stored in the <code>components</code> array starting at
* <code>offset</code>, even if the array is allocated by this method.
* An <code>ArrayIndexOutOfBoundsException</code> is thrown if the
* <code>components</code> array is not <code>null</code> and is not large
* enough to hold all the color and alpha components, starting at
* <code>offset</code>.
* @param pixel the specified pixel
* @param components the array to receive the color and alpha
* components of the specified pixel
* @param offset the offset into the <code>components</code> array at
* which to start storing the color and alpha components
* @return an array containing the color and alpha components of the
* specified pixel starting at the specified offset.
*/
final public int[] getComponents(int pixel, int[] components, int offset) {
if (components == null) {
components = new int[offset+numComponents];
}
for (int i=0; i < numComponents; i++) {
components[offset+i] = (pixel & maskArray[i]) >>> maskOffsets[i];
}
return components;
}
/**
* Returns an array of unnormalized color/alpha components given a pixel
* in this <code>ColorModel</code>. The pixel value is specified by an
* array of data elements of type <code>transferType</code> passed in as
* an object reference. If <code>pixel</code> is not a primitive array
* of type <code>transferType</code>, a <code>ClassCastException</code>
* is thrown. An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if <code>pixel</code> is not large enough to hold a
* pixel value for this <code>ColorModel</code>. If the
* <code>components</code> array is <code>null</code>, a new
* array is allocated. The <code>components</code> array is returned.
* Color/alpha components are stored in the <code>components</code> array
* starting at <code>offset</code>, even if the array is allocated by
* this method. An <code>ArrayIndexOutOfBoundsException</code>
* is thrown if the <code>components</code> array is not
* <code>null</code> and is not large enough to hold all the color and
* alpha components, starting at <code>offset</code>.
* Since <code>DirectColorModel</code> can be subclassed, subclasses
* inherit the implementation of this method and if they don't
* override it then they throw an exception if they use an unsupported
* <code>transferType</code>.
* @param pixel the specified pixel
* @param components the array to receive the color and alpha
* components of the specified pixel
* @param offset the offset into the <code>components</code> array at
* which to start storing the color and alpha components
* @return an array containing the color and alpha components of the
* specified pixel starting at the specified offset.
* @exception ClassCastException if <code>pixel</code>
* is not a primitive array of type <code>transferType</code>
* @exception ArrayIndexOutOfBoundsException if
* <code>pixel</code> is not large enough to hold a pixel value
* for this <code>ColorModel</code>, or if <code>components</code>
* is not <code>null</code> and is not large enough to hold all the
* color and alpha components, starting at <code>offset</code>
* @exception UnsupportedOperationException if this
* <code>transferType</code> is not supported by this
* color model
*/
final public int[] getComponents(Object pixel, int[] components,
int offset) {
int intpixel=0;
switch (transferType) {
case DataBuffer.TYPE_BYTE:
byte bdata[] = (byte[])pixel;
intpixel = bdata[0] & 0xff;
break;
case DataBuffer.TYPE_USHORT:
short sdata[] = (short[])pixel;
intpixel = sdata[0] & 0xffff;
break;
case DataBuffer.TYPE_INT:
int idata[] = (int[])pixel;
intpixel = idata[0];
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
return getComponents(intpixel, components, offset);
}
/**
* Creates a <code>WritableRaster</code> with the specified width and
* height that has a data layout (<code>SampleModel</code>) compatible
* with this <code>ColorModel</code>.
* @param w the width to apply to the new <code>WritableRaster</code>
* @param h the height to apply to the new <code>WritableRaster</code>
* @return a <code>WritableRaster</code> object with the specified
* width and height.
* @throws IllegalArgumentException if <code>w</code> or <code>h</code>
* is less than or equal to zero
* @see WritableRaster
* @see SampleModel
*/
final public WritableRaster createCompatibleWritableRaster (int w,
int h) {
if ((w <= 0) || (h <= 0)) {
throw new IllegalArgumentException("Width (" + w + ") and height (" + h +
") cannot be <= 0");
}
int[] bandmasks;
if (supportsAlpha) {
bandmasks = new int[4];
bandmasks[3] = alpha_mask;
}
else {
bandmasks = new int[3];
}
bandmasks[0] = red_mask;
bandmasks[1] = green_mask;
bandmasks[2] = blue_mask;
if (pixel_bits > 16) {
return Raster.createPackedRaster(DataBuffer.TYPE_INT,
w,h,bandmasks,null);
}
else if (pixel_bits > 8) {
return Raster.createPackedRaster(DataBuffer.TYPE_USHORT,
w,h,bandmasks,null);
}
else {
return Raster.createPackedRaster(DataBuffer.TYPE_BYTE,
w,h,bandmasks,null);
}
}
/**
* Returns a pixel value represented as an <code>int</code> in this
* <code>ColorModel</code>, given an array of unnormalized color/alpha
* components. An <code>ArrayIndexOutOfBoundsException</code> is
* thrown if the <code>components</code> array is
* not large enough to hold all the color and alpha components, starting
* at <code>offset</code>.
* @param components an array of unnormalized color and alpha
* components
* @param offset the index into <code>components</code> at which to
* begin retrieving the color and alpha components
* @return an <code>int</code> pixel value in this
* <code>ColorModel</code> corresponding to the specified components.
* @exception ArrayIndexOutOfBoundsException if
* the <code>components</code> array is not large enough to
* hold all of the color and alpha components starting at
* <code>offset</code>
*/
public int getDataElement(int[] components, int offset) {
int pixel = 0;
for (int i=0; i < numComponents; i++) {
pixel |= ((components[offset+i]<<maskOffsets[i])&maskArray[i]);
}
return pixel;
}
/**
* Returns a data element array representation of a pixel in this
* <code>ColorModel</code>, given an array of unnormalized color/alpha
* components.
* This array can then be passed to the <code>setDataElements</code>
* method of a <code>WritableRaster</code> object.
* An <code>ArrayIndexOutOfBoundsException</code> is thrown if the
* <code>components</code> array
* is not large enough to hold all the color and alpha components,
* starting at offset. If the <code>obj</code> variable is
* <code>null</code>, a new array is allocated. If <code>obj</code> is
* not <code>null</code>, it must be a primitive array
* of type <code>transferType</code>; otherwise, a
* <code>ClassCastException</code> is thrown.
* An <code>ArrayIndexOutOfBoundsException</code> is thrown if
* <code>obj</code> is not large enough to hold a pixel value for this
* <code>ColorModel</code>.
* Since <code>DirectColorModel</code> can be subclassed, subclasses
* inherit the implementation of this method and if they don't
* override it then they throw an exception if they use an unsupported
* <code>transferType</code>.
* @param components an array of unnormalized color and alpha
* components
* @param offset the index into <code>components</code> at which to
* begin retrieving color and alpha components
* @param obj the <code>Object</code> representing an array of color
* and alpha components
* @return an <code>Object</code> representing an array of color and
* alpha components.
* @exception ClassCastException if <code>obj</code>
* is not a primitive array of type <code>transferType</code>
* @exception ArrayIndexOutOfBoundsException if
* <code>obj</code> is not large enough to hold a pixel value
* for this <code>ColorModel</code> or the <code>components</code>
* array is not large enough to hold all of the color and alpha
* components starting at <code>offset</code>
* @exception UnsupportedOperationException if this
* <code>transferType</code> is not supported by this
* color model
* @see WritableRaster#setDataElements
* @see SampleModel#setDataElements
*/
public Object getDataElements(int[] components, int offset, Object obj) {
int pixel = 0;
for (int i=0; i < numComponents; i++) {
pixel |= ((components[offset+i]<<maskOffsets[i])&maskArray[i]);
}
switch (transferType) {
case DataBuffer.TYPE_BYTE:
if (obj instanceof byte[]) {
byte bdata[] = (byte[])obj;
bdata[0] = (byte)(pixel&0xff);
return bdata;
} else {
byte bdata[] = {(byte)(pixel&0xff)};
return bdata;
}
case DataBuffer.TYPE_USHORT:
if (obj instanceof short[]) {
short sdata[] = (short[])obj;
sdata[0] = (short)(pixel&0xffff);
return sdata;
} else {
short sdata[] = {(short)(pixel&0xffff)};
return sdata;
}
case DataBuffer.TYPE_INT:
if (obj instanceof int[]) {
int idata[] = (int[])obj;
idata[0] = pixel;
return idata;
} else {
int idata[] = {pixel};
return idata;
}
default:
throw new ClassCastException("This method has not been "+
"implemented for transferType " + transferType);
}
}
/**
* Forces the raster data to match the state specified in the
* <code>isAlphaPremultiplied</code> variable, assuming the data is
* currently correctly described by this <code>ColorModel</code>. It
* may multiply or divide the color raster data by alpha, or do
* nothing if the data is in the correct state. If the data needs to
* be coerced, this method will also return an instance of this
* <code>ColorModel</code> with the <code>isAlphaPremultiplied</code>
* flag set appropriately. This method will throw a
* <code>UnsupportedOperationException</code> if this transferType is
* not supported by this <code>ColorModel</code>. Since
* <code>ColorModel</code> can be subclassed, subclasses inherit the
* implementation of this method and if they don't override it then
* they throw an exception if they use an unsupported transferType.
*
* @param raster the <code>WritableRaster</code> data
* @param isAlphaPremultiplied <code>true</code> if the alpha is
* premultiplied; <code>false</code> otherwise
* @return a <code>ColorModel</code> object that represents the
* coerced data.
* @exception UnsupportedOperationException if this
* <code>transferType</code> is not supported by this
* color model
*/
final public ColorModel coerceData (WritableRaster raster,
boolean isAlphaPremultiplied)
{
if (!supportsAlpha ||
this.isAlphaPremultiplied() == isAlphaPremultiplied) {
return this;
}
int w = raster.getWidth();
int h = raster.getHeight();
int aIdx = numColorComponents;
float normAlpha;
float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1));
int rminX = raster.getMinX();
int rY = raster.getMinY();
int rX;
int pixel[] = null;
int zpixel[] = null;
if (isAlphaPremultiplied) {
// Must mean that we are currently not premultiplied so
// multiply by alpha
switch (transferType) {
case DataBuffer.TYPE_BYTE: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0.f) {
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * normAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
} else {
if (zpixel == null) {
zpixel = new int[numComponents];
java.util.Arrays.fill(zpixel, 0);
}
raster.setPixel(rX, rY, zpixel);
}
}
}
}
break;
case DataBuffer.TYPE_USHORT: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0.f) {
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * normAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
} else {
if (zpixel == null) {
zpixel = new int[numComponents];
java.util.Arrays.fill(zpixel, 0);
}
raster.setPixel(rX, rY, zpixel);
}
}
}
}
break;
case DataBuffer.TYPE_INT: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0.f) {
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * normAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
} else {
if (zpixel == null) {
zpixel = new int[numComponents];
java.util.Arrays.fill(zpixel, 0);
}
raster.setPixel(rX, rY, zpixel);
}
}
}
}
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
}
else {
// We are premultiplied and want to divide it out
switch (transferType) {
case DataBuffer.TYPE_BYTE: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0.0f) {
float invAlpha = 1.0f / normAlpha;
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * invAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
}
}
}
}
break;
case DataBuffer.TYPE_USHORT: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0) {
float invAlpha = 1.0f / normAlpha;
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * invAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
}
}
}
}
break;
case DataBuffer.TYPE_INT: {
for (int y = 0; y < h; y++, rY++) {
rX = rminX;
for (int x = 0; x < w; x++, rX++) {
pixel = raster.getPixel(rX, rY, pixel);
normAlpha = pixel[aIdx] * alphaScale;
if (normAlpha != 0) {
float invAlpha = 1.0f / normAlpha;
for (int c=0; c < aIdx; c++) {
pixel[c] = (int) (pixel[c] * invAlpha +
0.5f);
}
raster.setPixel(rX, rY, pixel);
}
}
}
}
break;
default:
throw new UnsupportedOperationException("This method has not been "+
"implemented for transferType " + transferType);
}
}
// Return a new color model
return new DirectColorModel(colorSpace, pixel_bits, maskArray[0],
maskArray[1], maskArray[2], maskArray[3],
isAlphaPremultiplied,
transferType);
}
/**
* Returns <code>true</code> if <code>raster</code> is compatible
* with this <code>ColorModel</code> and <code>false</code> if it is
* not.
* @param raster the {@link Raster} object to test for compatibility
* @return <code>true</code> if <code>raster</code> is compatible
* with this <code>ColorModel</code>; <code>false</code> otherwise.
*/
public boolean isCompatibleRaster(Raster raster) {
SampleModel sm = raster.getSampleModel();
SinglePixelPackedSampleModel spsm;
if (sm instanceof SinglePixelPackedSampleModel) {
spsm = (SinglePixelPackedSampleModel) sm;
}
else {
return false;
}
if (spsm.getNumBands() != getNumComponents()) {
return false;
}
int[] bitMasks = spsm.getBitMasks();
for (int i=0; i<numComponents; i++) {
if (bitMasks[i] != maskArray[i]) {
return false;
}
}
return (raster.getTransferType() == transferType);
}
private void setFields() {
// Set the private fields
// REMIND: Get rid of these from the native code
red_mask = maskArray[0];
red_offset = maskOffsets[0];
green_mask = maskArray[1];
green_offset = maskOffsets[1];
blue_mask = maskArray[2];
blue_offset = maskOffsets[2];
if (nBits[0] < 8) {
red_scale = (1 << nBits[0]) - 1;
}
if (nBits[1] < 8) {
green_scale = (1 << nBits[1]) - 1;
}
if (nBits[2] < 8) {
blue_scale = (1 << nBits[2]) - 1;
}
if (supportsAlpha) {
alpha_mask = maskArray[3];
alpha_offset = maskOffsets[3];
if (nBits[3] < 8) {
alpha_scale = (1 << nBits[3]) - 1;
}
}
}
/**
* Returns a <code>String</code> that represents this
* <code>DirectColorModel</code>.
* @return a <code>String</code> representing this
* <code>DirectColorModel</code>.
*/
public String toString() {
return new String("DirectColorModel: rmask="
+Integer.toHexString(red_mask)+" gmask="
+Integer.toHexString(green_mask)+" bmask="
+Integer.toHexString(blue_mask)+" amask="
+Integer.toHexString(alpha_mask));
}
}
⏎ java/awt/image/DirectColorModel.java
Or download all of them as a single archive file:
File name: jre-rt-java-1.8.0_191-src.zip File size: 6664831 bytes Release date: 2018-10-28 Download
⇒ JRE 8 rt.jar - javax.* Package Source Code
2025-02-24, ≈455🔥, 5💬
Popular Posts:
JDK 17 java.sql.rowset.jmod is the JMOD file for JDK 17 SQL Rowset module. JDK 17 SQL Rowset module ...
xml-commons Resolver Source Code Files are provided in the source package file, xml-commons-resolver...
maven-settings-builder-3 .8.6.jaris the JAR file for Apache Maven 3.8.6 Settings Builder module. Apa...
What JAR files are required to run dom\Writer.java provided in the Apache Xerces package? 3 JAR file...
What Is fop.jar? I got it from the fop-2.7-bin.zip. fop.jar in fop-2.7-bin.zip is the JAR file for F...